首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In a recent paper entitled “Truth does not explain predictive success” (Analysis, 2011), Carsten Held argues that the so-called “No-Miracles Argument” for scientific realism is easily refuted when the consequences of the underdetermination of theories by the evidence are taken into account. We contend that the No-Miracles Argument, when it is deployed within the context of sophisticated versions of realism, based on the notion of truthlikeness (or verisimilitude), survives Held’s criticism unscathed.  相似文献   

2.
First, I argue that scientific progress is possible in the absence of increasing verisimilitude in science's theories. Second, I argue that increasing theoretical verisimilitude is not the central, or primary, dimension of scientific progress. Third, I defend my previous argument that unjustified changes in scientific belief may be progressive. Fourth, I illustrate how false beliefs can promote scientific progress in ways that cannot be explicated by appeal to verisimilitude.  相似文献   

3.
In this paper, three theories of progress and the aim of science are discussed: (i) the theory of progress as increasing explanatory power, advocated by Popper in The logic of scientific discovery (1935/1959); (ii) the theory of progress as approximation to the truth, introduced by Popper in Conjectures and refutations (1963); (iii) the theory of progress as a steady increase of competing alternatives, which Feyerabend put forward in the essay “Reply to criticism. Comments on Smart, Sellars and Putnam” (1965) and defended as late as the last edition of Against method (1993). It is argued that, contrary to what Feyerabend scholars have predominantly assumed, Feyerabend's changing attitude towards falsificationism—which he often advocated at the beginning of his career, and vociferously attacked in the 1970s and 1980s—must be explained by taking into account not only Feyerabend's very peculiar view of the aim of science, but also Popper's changing account of progress.  相似文献   

4.
5.
Advocates of the self-corrective thesis argue that scientific method will refute false theories and find closer approximations to the truth in the long run. I discuss a contemporary interpretation of this thesis in terms of frequentist statistics in the context of the behavioral sciences. First, I identify experimental replications and systematic aggregation of evidence (meta-analysis) as the self-corrective mechanism. Then, I present a computer simulation study of scientific communities that implement this mechanism to argue that frequentist statistics may converge upon a correct estimate or not depending on the social structure of the community that uses it. Based on this study, I argue that methodological explanations of the “replicability crisis” in psychology are limited and propose an alternative explanation in terms of biases. Finally, I conclude suggesting that scientific self-correction should be understood as an interaction effect between inference methods and social structures.  相似文献   

6.
7.
In his book Thing Knowledge Davis Baird argues that our accustomed understanding of knowledge as justified true beliefs is not enough to understand progress in science and technology. To be more accurate he argues that scientific instruments are to be seen as a form of “objective knowledge” in the sense of Karl Popper.I want to examine if this idea is plausible. In a first step I want to show that this proposal implies that nearly all man-made artifacts are materialized objective knowledge. I argue that this radical change in our concept of knowledge demands strong reasons and that Baird does not give them. I take a look at the strongest strand of arguments of Baird's book—the arguments from cognitive autonomy—and conclude that they do not suffice to make Baird's view of scientific instruments tenable.  相似文献   

8.
Donald T. Campbell outlines an epistemological theory that attempts to be faithful to evolution through natural selection. He takes his position to be consistent with that of Karl R. Popper, whom he credits as the primary advocate of his day for natural selection epistemology. Campbell writes that neither he nor Popper want to give up the goal of objectivity or objective truth, in spite of their evolutionary epistemology. In discussing the conflict between an epistemology based on natural selection and objective truth, Campbell cites an article by the German sociologist and philosopher Georg Simmel entitled ‘On a Connection of Selection Theory to Epistemology’, as presenting the issue in a notably forthright manner.The present essay summarizes Simmel's article, with the purpose of clarifying, in terms that Campbell apparently finds satisfactory, the conflict that Campbell acknowledges between an evolutionary epistemology and ultimate truth; the essay then examines the responses of Campbell and Popper to Simmel's position. While Campbell and Popper acknowledge the work of Simmel, their responses suggest something less than a full consideration of Simmel's position.  相似文献   

9.
Contrary to Sankey’s central assumption, incommensurability does not imply incomparability of content, nor threaten scientific realism by challenging the rationality of theory comparison. Moreover, Sankey equivocates between reference to specific entities by statements used to test theories and reference to kinds by theories themselves. This distinction helps identify and characterize the genuine threat that incommensurability poses to realism, which is ontological discontinuity as evidenced in the historical record: Successive theories reclassify objects into mutually exclusive sets of kinds to which they refer. That is why claiming that scientific progress is an increasingly better approximation to truth is difficult to justify. Similarly, Sankey’s attack on neo-Kantian antirealist positions is based on his misunderstanding of some of the central terms of those positions, making most of his attack on them ineffectual, including his diagnosis of their incoherence. We conclude by reiterating our conviction that in this debate meta-incommensurability plays an important role.  相似文献   

10.
In this paper I challenge and adjudicate between the two positions that have come to prominence in the scientific realism debate: deployment realism and structural realism. I discuss a set of cases from the history of celestial mechanics, including some of the most important successes in the history of science. To the surprise of the deployment realist, these are novel predictive successes toward which theoretical constituents that are now seen to be patently false were genuinely deployed. Exploring the implications for structural realism, I show that the need to accommodate these cases forces our notion of “structure” toward a dramatic depletion of logical content, threatening to render it explanatorily vacuous: the better structuralism fares against these historical examples, in terms of retention, the worse it fares in content and explanatory strength. I conclude by considering recent restrictions that serve to make “structure” more specific. I show however that these refinements will not suffice: the better structuralism fares in specificity and explanatory strength, the worse it fares against history. In light of these case studies, both deployment realism and structural realism are significantly threatened by the very historical challenge they were introduced to answer.  相似文献   

11.
“Colligation”, a term first introduced in philosophy of science by William Whewell (1840), today sparks a renewed interest beyond Whewell scholarship. In this paper, we argue that adopting the notion of colligation in current debates in philosophy of science can contribute to our understanding of scientific models. Specifically, studying colligation allows us to have a better grasp of how integrating diverse model components (empirical data, theory, useful idealization, visual and other representational resources) in a creative way may produce novel generalizations about the phenomenon investigated. Our argument is built both on the theoretical appraisal of Whewell’s philosophy of science and the historical rehabilitation of his scientific work on tides. Adopting a philosophy of science in practice perspective, we show how colligation emerged from Whewell’s empirical work on tides. The production of idealized maps (“cotidal maps”) illustrates the unifying and creative power of the activity of colligating in scientific practice. We show the importance of colligation in modelling practices more generally by looking at its epistemic role in the construction of the San Francisco Bay Model.  相似文献   

12.
A central topic in the logic of science concerns the proper semantic analysis of theoretical sentences, that is sentences containing theoretical terms. In this paper, we present a novel choice-semantical account of theoretical truth based on the epsilon-term definition of theoretical terms. Specifically, we develop two ways of specifying the truth conditions of theoretical statements in a choice functional semantics, each giving rise to a corresponding logic of such statements. In order to investigate the inferential strength of these logical systems, we provide a translation of each truth definition into a modal definition of theoretical truth. Based on this, we show that the stronger notion of choice-semantical truth captures more adequately our informal semantic understanding of scientific statements.  相似文献   

13.
Recent literature in the scientific realism debate has been concerned with a particular species of statistical fallacy concerning base-rates, and the worry that no matter how predictively successful our contemporary scientific theories may be, this will tell us absolutely nothing about the likelihood of their truth if our overall sample space contains enough empirically adequate theories that are nevertheless false. In response, both realists and anti-realists have switched their focus from general arguments concerning the reliability and historical track-records of our scientific methodology, to a series of specific arguments and case-studies concerning our reasons to believe individual scientific theories to be true. Such a development however sits in tension with the usual understanding of the scientific realism debate as offering a second-order assessment of our first-order scientific practices, and threatens to undermine the possibility of a distinctive philosophical debate over the approximate truth of our scientific theories. I illustrate this concern with three recent attempts to offer a more localised understanding of the scientific realism debate—due to Stathis Psillos, Juha Saatsi, and Kyle Stanford—and argue that none of these alternatives offer a satisfactory response to the problem.  相似文献   

14.
A conventional wisdom about the progress of physics holds that successive theories wholly encompass the domains of their predecessors through a process that is often called “reduction.” While certain influential accounts of inter-theory reduction in physics take reduction to require a single “global” derivation of one theory׳s laws from those of another, I show that global reductions are not available in all cases where the conventional wisdom requires reduction to hold. However, I argue that a weaker “local” form of reduction, which defines reduction between theories in terms of a more fundamental notion of reduction between models of a single fixed system, is available in such cases and moreover suffices to uphold the conventional wisdom. To illustrate the sort of fixed-system, inter-model reduction that grounds inter-theoretic reduction on this picture, I specialize to a particular class of cases in which both models are dynamical systems. I show that reduction in these cases is underwritten by a mathematical relationship that follows a certain liberalized construal of Nagel/Schaffner reduction, and support this claim with several examples. Moreover, I show that this broadly Nagelian analysis of inter-model reduction encompasses several cases that are sometimes cited as instances of the “physicist׳s” limit-based notion of reduction.  相似文献   

15.
How should we understand scientific progress? Kuhn famously discussed science as its own internally driven venture, structured by paradigms. He also famously had a problem describing progress in science, as problem-solving ability failed to provide a clear rubric across paradigm change—paradigm changes tossed out problems as well as solving them. I argue here that much of Kuhn’s inability to articulate a clear view of scientific progress stems from his focus on pure science and a neglect of applied science. I trace the history of the distinction between pure and applied science, showing how the distinction came about, the rhetorical uses to which the distinction has been put, and how pure science came to be both more valued by scientists and philosophers. I argue that the distinction between pure and applied science does not stand up to philosophical scrutiny, and that once we relinquish it, we can provide Kuhn with a clear sense of scientific progress. It is not one, though, that will ultimately prove acceptable. For that, societal evaluations of scientific work are needed.  相似文献   

16.
I revisit an older defense of scientific realism, the methodological defense, a defense developed by both Popper and Feyerabend. The methodological defense of realism concerns the attitude of scientists, not philosophers of science. The methodological defense is as follows: a commitment to realism leads scientists to pursue the truth, which in turn is apt to put them in a better position to get at the truth. In contrast, anti-realists lack the tenacity required to develop a theory to its fullest. As a consequence, they are less likely to get at the truth.My aim is to show that the methodological defense is flawed. I argue that a commitment to realism does not always benefit science, and that there is reason to believe that a research community with both realists and anti-realists in it may be better suited to advancing science. A case study of the Copernican Revolution in astronomy supports this claim.  相似文献   

17.
The problem of establishing intensional criteria to demarcate science from non-science, and in particular science from pseudoscience, received a great amount of attention in the 20th century philosophy of science. It remains unsolved. This article compares demarcation criteria found in Marcus Tullius Cicero’s rejection of genethliac astrology and other pseudo-divinatory techniques in his De divinatione (44 BCE) with criteria advocated by a broad selection of modern philosophers of science and other specialists in science studies. Remarkable coincidences across two millennia are found on five basic criteria, which hints at a certain historical stability of some of the most fundamental features of a concept of “science” broadly construed.  相似文献   

18.
Michael Friedman defines the scientific enterprise as an ongoing project with a dynamics of reason that persists through scientific revolutions: The coherence and continuity of science owes to a communicative rationality that is operative at all times. It assures us of our shared objective world by transforming subjective points of view into intersubjectively binding agreements. Though it takes a very broad approach epistemologically, this conception of science may yet be too narrow in respect to notions of objectivity. It excludes a prominent mode of knowledge production that might be called technoscientific. This exclusion becomes particularly evident in Friedman’s discussion of Heidegger as a critic of Cassirer and Carnap and as a critic of objectivity as “universal validity” of scientific propositions. If one tends to Heidegger’s own account of objectivity, one encounters a non-propositional notion of truth. Science is seen as a technology that brings forth phenomena and processes. Accordingly, even where modern physics appears to be concerned primarily with the formulation of theories and the testing of hypotheses, it uses mathematical and representational techniques to conceive and create the modern world. And more powerfully than intersubjective agreement, technologies assure us of the unity and objectivity of our simultaneously social as well as natural world. There may be good reasons to hold fast to the close affiliation of communicative rationality, science, and enlightenment. However, to the extent that it turns a blind eye to technoscientific knowledge production and the technological character of science, a philosophy of technoscience needs to develop an alternative perspective on questions of objectivity, explanation, inference, or validation.  相似文献   

19.
In a number of papers and in his recent book, Is Water H2O? Evidence, Realism, Pluralism (2012), Hasok Chang has argued that the correct interpretation of the Chemical Revolution provides a strong case for the view that progress in science is served by maintaining several incommensurable “systems of practice” in the same discipline, and concerning the same region of nature. This paper is a critical discussion of Chang's reading of the Chemical Revolution. It seeks to establish, first, that Chang's assessment of Lavoisier's and Priestley's work and character follows the phlogistonists' “actors' sociology”; second, that Chang simplifies late-eighteenth-century chemical debates by reducing them to an alleged conflict between two systems of practice; third, that Chang's evidence for a slow transition from phlogistonist theory to oxygen theory is not strong; and fourth, that he is wrong to assume that chemists at the time did not have overwhelming good reasons to favour Lavoisier's over the phlogistonists' views.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号