共查询到18条相似文献,搜索用时 109 毫秒
1.
提出一种基于Sparse K-SVD学习字典的语音增强方法,采用Sparse K-SVD算法自适应地训练一个可稀疏表示的冗余字典,在该冗余字典上采用正交匹配追踪(OMP)算法对带噪语音信号进行稀疏分解,利用稀疏系数矩阵重构纯净语音,实现语音增强.使用NOIZEUS语音库进行了一系列的语音增强实验,主客观评测数据表明,基于稀疏表示的语音增强方法(分别使用Sparse K-SVD和K-SVD训练字典)相对于传统语音增强方法(小阈值波法、谱减法、改进谱减法)可进一步改善语音质量;对字典训练时间进行统计,发现Sparse K-SVD算法训练字典消耗的时间为K-SVD算法训练时间的1/6~1/10,大幅度提高了计算效率. 相似文献
2.
提出一种改进的基于K-SVD字典的图像修复算法.该算法基于稀疏表示,利用待修复图像内的有效信息,以不重叠像素的方式提取图像块,采用模糊C均值聚类算法对图像块进行聚类,并使用K-SVD算法分别对各类图像块进行训练,得到与各类图像块相适应的字典,重建图像块,修复受损图像.实验结果表明,该算法能提高图像的修复质量和图像的峰值性噪比,且均方根误差较小. 相似文献
3.
介绍了一种基于字典学习的去噪方法,并将其应用于降低低剂量CT图像噪声水平的研究.针对体模图像和病人图像,分别选择低剂量CT图像和正常剂量CT图像作为训练样本,采用K-SVD算法,通过迭代学习构建图像字典;然后,结合正交匹配跟踪算法,实现图像稀疏表示,稀疏成分对应于图像的有用信息,其他成分对应于图像噪声;最后,依据图像的稀疏成分重建图像,达到去除噪声的目的.实验结果表明:字典的大小、稀疏表示的约束条件等参数会显著影响所提算法的去噪结果;相比低剂量CT图像,将正常剂量CT图像作为训练样本可以得到更好的去噪结果;在相同的噪声水平下,所提算法与传统图像去噪算法相比可以更好地去除图像噪声,且保留了图像的细节信息. 相似文献
4.
基于超完备字典的图像稀疏表示因其具有稀疏性、特征保持性、可分性等特点而被广泛应用于图像处理.本文利用K-SVD字典学习算法并应用于MR图像重建.将字典学习等价于一个二次规划问题,学习得到的字典能有效描述图像特征.基于学习所得的字典,获得图像的稀疏表示,并重建原始图像.实验结果表明,与Zero-filling方法相比,本文的重建结果能更好地保留图像细节信息,获得更高的SNR值. 相似文献
5.
目的针对噪声对QR码图像识别干扰,提出一种基于稀疏表示和字典学习的自适应去噪算法。方法采用稀疏表示和字典学习的方法。结果得到高效描述图像内容的字典,能更有效地滤除图像中的噪声,保留原图像的有用信息。结论利于QR码的准确、快速识别,可大大提高识别率。 相似文献
6.
《信阳师范学院学报(自然科学版)》2016,(2):261-264
针对字典学习l0或l1范数的稀疏约束导致训练和测试阶段较高的复杂性,提出用于人脸识别的字典投影学习算法.该算法合成和分析字典,达到信号表示和分类.实验结果表明,与传统的DL方法相比,所提出的DPL方法大大降低了训练和测试阶段的时间复杂度;与KNN算法相比,具有较高的识别精度和较好的稳定性. 相似文献
7.
磁共振图像的降噪处理一直是医学图像处理中重要的研究领域。图像中存在噪声会降低图像质量从而影响临床诊断。现有K-SVD 算法虽然能达到良好的去噪效果,但却在字典训练中消耗大量时间。本文针对时间消耗问题,提出利用改进的KSVD算法进行医学图像去噪。首先根据已知的字典原子的可稀疏性,提出一种高效、灵活的稀疏字典结构,该字典能够提供高效的前向和伴随算子,并具有紧凑的表示形式,同时可以有效地训练图像信号;然后在现有K-SVD 算法的基本框架下,结合字典的稀疏表示特点使用改进K-SVD 算法训练稀疏字典,改进的K-SVD 算法能够对更大的字典进行训练,特别是对高维数据的处理更具有优势。实验结果表明,该算法相对基于离散余弦变换字典的磁共振图像去噪以及基于传统K-SVD 算法的磁共振图像去噪,不仅能够更加有效地滤除图像中的高斯白噪声,更好地保留原图像的细节信息,而且有效降低了字典训练所消耗的时间;在相同的噪声标准差下,改进K-SVD 算法的峰值信噪比提高了约1~3 dB。 相似文献
8.
提出一种改进的基于K-SVD字典的图像修复算法.该算法基于稀疏表示,利用待修复图像内的有效信息,以不重叠像素的方式提取图像块,采用模糊C均值聚类算法对图像块进行聚类,并使用K-SVD算法分别对各类图像块进行训练,得到与各类图像块相适应的字典,重建图像块,修复受损图像.实验结果表明,该算法能提高图像的修复质量和图像的峰值性噪比,且均方根误差较小. 相似文献
9.
10.
为解决传统K-奇异值分解(K-SVD)算法字典训练耗时过长以及低信噪比情形下去噪效果不佳的问题,提出了一种改进算法。首先将原始含噪图像进行高低频分离,然后对图像的高频部分使用基于残差比阈值的批量正交匹配追踪算法(Batch-OMP)实现稀疏重构,最后将图像的高低频部分叠加完成最终的去噪。实验结果表明,相较于小波变换去噪、DCT稀疏表示去噪以及传统K-SVD稀疏表示去噪,改进的算法能够更好地保留图像的边缘轮廓信息,并且去噪时间明显缩短。 相似文献
11.
针对传统方法进行岩心图像压缩感知重构时,在低码率下容易产生细节丢失的问题,提出一种基于
K-SVD( K-Singular Value Decomposition) 超完备字典学习的压缩感知重构算法。首先根据分块压缩感知理论,将
岩心图像分块,采用高斯随机矩阵对相应层级的图像块进行观测,得到对应的观测值块,然后用MMSE
( Minimum Mean Squareerror Estimation) 方法获得初始解的估计并利用提示小波进行滤波,通过全局阈值的思想
得到自适应阈值,最后利用K-SVD 字典结合Landweber 迭代实现压缩与重构。实验结果表明,与传统方法相
比,在相同的采样率下获得的重构图像能较好地保留岩心图像的纹理信息,重构岩心图像的PSNR( Peak Signal
to Noise Ratio) 值提高约0. 1 ~ 0. 8 dB。 相似文献
12.
为了解决在基于稀疏表示的分类算法中,传统字典学习框架下学习得到的字典仅可用于信号重构而并不针对分类的问题,分析和总结了具有代表性的面向分类的字典学习算法,也称判决性字典学习。判决性字典学习算法总体上分为两类:直接使得字典具有判决性和使得表示系数具有判决性。对两类方法进行分析和总结可为本领域算法的发展提供参考,并引起更多研究。 相似文献
13.
针对轴承振动信号中早期故障特征难以识别的问题,提出了利用非相关字典学习稀疏提取微弱冲击特征,进而完成故障诊断的方法。字典的构造是影响稀疏表示算法性能的关键步骤,而传统字典学习方法构造的冗余字典,原子之间具有很强的相关性,不足以表现信号不同的结构特性,也不利于信号准确稀疏重构,进而影响了冲击故障特征信号的提取。因此,在K均值奇异值分解算法(K-SVD)的基础上加入了原子解相关的步骤,形成了非相关字典学习算法(INK-SVD)。采用INK-SVD算法在含噪振动信号段样本中,学习构造低相关性自适应字典;在此基础上,利用稀疏表示方法准确提取冲击故障特征,从而实现更准确的轴承故障诊断。通过仿真分析及实验数据分析,与传统字典学习方法相比,该方法稀疏系数恢复精确度更高,重构信号的包络解调谱更有利于故障特征的辨识,从而验证了该方法的有效性。 相似文献
14.
基于字典学习的大气湍流退化图像复原技术应用 总被引:1,自引:0,他引:1
为了消除大气湍流对图像的影响, 提高图像质量, 结合稀疏表示理论, 采用字典学习的算法处理大气湍流退化图像。将DCT 过完备字典、K-svd 全局字典和自适应字典的算法应用于图像去噪过程, 并与维纳滤波算法进行比较。结果表明, 该算法能较好地滤除大气湍流退化图像的噪声, 提高图像的峰值信噪比。仿真实验验证了稀疏表示在处理大气湍流退化图像的可行性, 对比传统算法具有更好的去噪性能。 相似文献
15.
针对强遮挡导致的跟踪目标失效问题, 提出一种基于字典学习改进的时空上下文算法. 先在目标和上下文区域构建前景字典和上下文字典, 再利用稀疏解的特性, 给提取目标特征更高的权重, 并参与模板的更新, 构造新的条件概率. 实验结果表明, 在出现严重遮挡的数据集中, 时空上下文算法跟踪成功率为19.5%, 改进算法成功率达94.5%, 改进算法能在出现强遮挡情况下有效对抗遮挡问题, 稳定跟踪. 相似文献
16.
为了提升单幅彩色图像的超分辨率重建质量,提出了一种改进的基于学习的超分辨率方法.针对半耦合字典学习超分辨率算法训练精度不高的缺陷,采用稀疏域分类与半耦合字典学习交替进行的启发式策略.在训练阶段引入稀疏域非局部相似性约束项,使用改进了的非局部约束l1范数优化问题求解算法,训练得到多组高、低分辨率字典和映射矩阵.在重建阶段利用分类稀疏表示、非局部相似性并结合残差补偿进一步提高重建精度.实验结果表明,该方法在主观和客观评价标准下均取得了较好的重建效果,显著提升了超分辨率重建质量. 相似文献
17.
基于视觉的人体动作识别方法对光线和视距环境较高,并且存在侵犯隐私的问题,在应用中有局限性。为了解决这个问题,提出一种基于毫米波雷达和字典学习的人体动作识别方法。首先对人体动作的雷达回波信号进行时频分析得到时频图,再使用两种特征提取方法对时频图进行降维描述,将两种降维后的数据融合,通过LC-KSVD字典学习算法同时学习多特征字典和一个线性分类器,最后根据稀疏系数和线性分类器来识别动作。在此基础上,设计77 GHz毫米波雷达动作识别实验系统,结果表明:算法在10种人体动作数据集上达到了97.7%的识别准确率,可见所提方法实现了对人体动作的准确识别。 相似文献
18.
针对传统字典学习算法预处理阶段未考虑图像内外部特征的问题,提出一种基于灰度梯度矩阵的图像熵字典学习算法.该算法通过灰度梯度矩阵计算图像块熵值,并对各图像块进行分类,每类数据组合成训练数据集,再利用基于系数矩阵的奇异值分解算法更新各类子字典.对测试图像的稀疏表示系数进行重建实验,仿真结果表明,该算法可高效训练出自适应稀疏字典,显著提高图像重建精度. 相似文献