首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate stimulates inositol phosphate formation in striatal neurones   总被引:11,自引:0,他引:11  
F Sladeczek  J P Pin  M Récasens  J Bockaert  S Weiss 《Nature》1985,317(6039):717-719
The major excitatory amino acids, glutamate (Glu) and aspartate (Asp), are thought to act at three receptor subtypes in the mammalian central nervous system (CNS). These are termed quisqualate (QA), N-methyl-D-aspartate (NMDA) and kainate (KA) receptors according to the specific agonist properties of these compounds revealed by electrophysiological studies. Although Glu has been shown to stimulate cyclic GMP formation in brain slices, direct regulation of second messenger systems (cyclic AMP, Ca2+ or inositol phosphates) subsequent to activation of excitatory amino-acid receptors, has not been extensively studied. Here we demonstrate that in striatal neurones, excitatory amino acids, but not inhibitory or non-neuroactive amino acids, induce a three- to fourfold increase in inositol mono-, di- and triphosphate (IP, IP, IP) formation with the relative potency QA greater than Glu greater than NMDA, KA. The Glu-evoked formation of inositol phosphates appears to result principally from actions at QA as well as NMDA receptors on striatal neurones. Our results suggest that excitatory amino acids stimulate inositol phosphate formation directly, rather than indirectly by the evoked release and subsequent actions of adenosine or acetylcholine.  相似文献   

2.
M M Slaughter  R F Miller 《Nature》1983,303(5917):537-538
The bipolar cells of the vertebrate retina are the principal neuronal elements which transmit photoreceptor activity from the outer to the inner retina. An important function of the bipolars is to segregate photoreceptor input into independent ON and OFF channels which are subserved, respectively, by the depolarizing and hyperpolarizing bipolar subtypes. Ultrastructural and physiological observations suggest that chemical neurotransmission is the predominant means of bipolar input to the inner retina. Both ON and OFF bipolars apparently release excitatory transmitters. Histological studies with cytotoxic agents and physiological studies indicate that third-order neurones have excitatory amino acid receptors. In ON-OFF amacrine and ganglion cells, which receive input from both bipolars, ON and OFF excitation have a similar ionic basis, suggesting that the same transmitter may be released by both types of bipolars. We have now found that (+/-)cis-2,3-piperidine dicarboxylic acid (PDA), a new excitatory amino acid antagonist, blocks bipolar input to the inner retina and thus suggests that an excitatory amino acid is a bipolar cell transmitter.  相似文献   

3.
A crucial epileptogenic site in the deep prepiriform cortex   总被引:16,自引:0,他引:16  
S Piredda  K Gale 《Nature》1985,317(6038):623-625
Antagonists of gamma-aminobutyric acid (GABA)- or glycine-mediated neurotransmission, muscarinic cholinergic agonists, and excitatory amino acids and their analogues are all considered to be potent chemoconvulsant agents. However, although systemic injections of these agents have been used to create experimental models of generalized epilepsy, there has been no identification of a specific locus at which any of these drugs act to initiate generalized seizures. We recently located a forebrain region from which seizures can be elicited by the GABA antagonist bicuculline, and now report that manipulations of excitatory amino acid transmission and cholinergic transmission can also elicit seizures from this site. Bilateral clonic seizures can be elicited after unilateral application of picomole amounts of bicuculline, kainic acid or carbachol and micromole amounts of glutamate. Local application of the GABA agonist muscimol prevents the appearance of seizures on subsequent microinjection of all convulsant agents examined, whereas local application of the muscarinic antagonist, atropine, only prevents seizures induced by carbachol. This region is therefore a site of action for the epileptogenic effects of neuroactive agents with diverse mechanisms of action; it may also represent a site at which GABA agonists could function therapeutically to control epileptogenesis.  相似文献   

4.
Huntington's disease (HD) is an autosomal dominant neurological disorder characterized by progressive chorea, cognitive impairment and emotional disturbance. The disease usually occurs in midlife and symptoms progress inexorably to mental and physical incapacitation. It has been postulated that an excitotoxin is involved in the pathogenesis of HD. Schwarcz and colleagues have shown that quinolinic acid (QA) can produce axon-sparing lesions similar to those observed in HD. The lesions result in a depletion of neurotransmitters contained within striatal spiny neurones, for example gamma-aminobutyric acid (GABA), while dopamine is unaffected. Recently, we and others have demonstrated that in HD striatum there is a paradoxical 3-5-fold increase in both somatostatin and neuropeptide Y which is attributable to selective preservation of a subclass of striatal aspiny neurones in which these peptides are co-localized. In the present study we demonstrate that lesions due to quinolinic acid closely resemble those of HD as they result in marked depletions of both GABA and substance P, with selective sparing of somatostatin/neuropeptide Y neurones. Lesions produced by kainic acid (KA), ibotenic acid (IA) and N-methyl-D-aspartate (MeAsp) were unlike those produced by QA, as they affected all cell types without sparing somatostatin/neuropeptide Y neurones. These results suggest that QA or a similar compound could be responsible for neuronal degeneration in HD.  相似文献   

5.
Synaptic localization of kainic acid binding sites   总被引:7,自引:0,他引:7  
A C Foster  E E Mena  D T Monaghan  C W Cotman 《Nature》1981,289(5793):73-75
The heterocyclic compound kainic acid (KA) is a potent excitant when applied to mammalian neurones. Lesions caused by injections of KA into the rat striatum and hippocampus cause similar patterns of damage to those seen in Huntington's chorea and status epilepticus, respectively. Although it was originally thought to be a glutamate agonist, it is now clear that KA does not act on the majority of the receptors for glutamate, and in fact seems to act on a class of receptors which are distinct from those which mediate responses to other excitatory amino acids. The potent and selective neurotoxic effects of this compound may be mediated by these same receptors. At present, the relative distribution of junctional and extrajunctional (non-synaptic) receptors is unknown and resolution of this issue would provide important insights into the action of KA on the central nervous system (CNS). We show here that KA binding sites are greatly enriched in isolated synaptic junctions from rat brain and, using an in vitro autoradiographic technique, we have found that these binding sites are concentrated specifically in terminal fields where KA acts as a potent neurotoxin.  相似文献   

6.
D T Monaghan  V R Holets  D W Toy  C W Cotman 《Nature》1983,306(5939):176-179
Glutamate is thought to serve as a major excitatory neurotransmitter throughout the central nervous system (CNS); electrophysiological studies indicate that its action is mediated by multiple receptors. Four receptors have been characterized by their selective sensitivity to N-methyl-D-aspartate (NMDA), kainic acid (KA), quisqualic acid (QA) and 2-amino-4-phosphonobutyric acid (APB). Electrophysiological evidence indicates that these receptors are all present in the rat hippocampus and that the anatomically discrete synaptic fields within the hippocampus exhibit differential sensitivity to the selective excitatory amino acid agents. Thus, we have used the hippocampus as a model system to investigate possible subpopulations of 3H-L-glutamate binding sites. By using quantitative autoradiography, the pharmacological specificity of 3H-L-glutamate binding in discrete terminal fields was determined. We report here that there are at least four distinct classes of 3H-L-glutamate binding sites which differ in their anatomical distribution, pharmacological profile and regulation by ions. Two of these sites seem to correspond to the KA and NMDA receptor classes, and a third site may represent the QA receptor. The fourth binding site does not conform to present receptor classifications. None of these binding sites corresponds to the major glutamate binding site observed in biochemical studies.  相似文献   

7.
First visualization of glutamate and GABA in neurones by immunocytochemistry   总被引:17,自引:0,他引:17  
Immunocytochemical methods for peptides and serotonin have greatly advanced the study of neurones in which these substances are likely to be transmitters. Such direct techniques have not so far been available for the amino acid transmitter candidates. We report here the selective immunocytochemical visualization of the putative transmitters glutamate (Glu) and gamma-aminobutyrate (GABA) by the use of antibodies raised against the amino acids coupled to bovine serum albumin (BSA) with glutaraldehyde (GA). The tissue localizations of Glu-like and GABA-like immunoreactivities (Glu-LI and GABA-LI) matched those of specific uptake sites for Glu and GABA, and, in the case of GABA-LI, also that of the specific marker enzyme glutamic acid decarboxylase (GAD). Thus, GABA-LI was located in what are believed to be GABAergic inhibitory neurones, whereas Glu-LI was concentrated in excitatory, possibly glutamatergic neurones. Preliminary electron microscopic observations suggest that the transmitter amino acids are significantly concentrated in synaptic vesicles.  相似文献   

8.
GABA and GAD immunoreactivity of photoreceptor terminals in primate retina   总被引:2,自引:0,他引:2  
Y Nishimura  M L Schwartz  P Rakic 《Nature》1986,320(6064):753-756
Within the vertebrate retina, two types of photoreceptor cells--the rods and cones--transduce visual signals and convey this information through synapses with bipolar and horizontal cells. Although the neurotransmitter at these first-order synapses has not been identified, electrophysiological studies suggest that it might be excitatory. In the present study, however, we have found photoreceptor terminals in the rhesus monkey retina which are immunoreactive with antibodies to either gamma-aminobutyric acid (GABA) or L-glutamic acid decarboxylase (GAD, an enzyme involved in the synthesis of GABA). In the perifoveal region of the retina, approximately 25% of presynaptic profiles having ultrastructural characteristics of either rod or cone terminals are immunoreactive with one or the other antibody. This evidence for a putatively inhibitory neurotransmitter in photoreceptor terminals challenges present understanding of retinal synaptic function.  相似文献   

9.
Adenosine-induced slow ionic currents in the Xenopus oocyte   总被引:11,自引:0,他引:11  
I Lotan  N Dascal  S Cohen  Y Lass 《Nature》1982,298(5874):572-574
Adenosine and its 5'-phosphorylated congeners evoke specific membrane-mediated responses in excitable tissues. Available data suggest that inhibition of the target cell occurs due to hyperpolarization, and in some preparations a compound effect of ATP (excitation and inhibition) has been found. However, the ionic mechanism of the purinergic-mediated response has not been studied by standard intracellular voltage-clamping techniques. Recently, we have discovered purinergic receptors in the Xenopus oocyte, a well defined giant cell amenable to rigorous electrophysiological and biochemical studies. We report here that in these cells, adenosine-induced slow membrane responses consisted of an early depolarizing (D) transient current carried by Cl ions, followed by a steady hyperpolarizing (H) current involving K+ ions. The relative potency sequence for the D current was ATP congruent to ADP greater than AMP congruent to adenosine; this order was reversed for the H current.  相似文献   

10.
Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones   总被引:3,自引:0,他引:3  
L Haynes  K W Yau 《Nature》1985,317(6032):61-64
A cyclic GMP-sensitive conductance has recently been observed with patch-clamp recording in excised inside-out patches of plasma membrane from frog and toad rod outer segments. This conductance has properties suggesting that it is probably the light-sensitive conductance involved in visual transduction. We now report a similar conductance in the outer segment membrane of catfish cones. Cyclic GMP showed positive cooperativity in opening this conductance, with a Hill coefficient of 1.6-3.0 and a half-saturating cGMP concentration of 35-70 microM. Cyclic AMP at 1 mM, or changing Ca concentration (in the presence of Mg), had little effect on the conductance. In physiological solutions the cGMP-induced current had a reversal potential near +10 mV; the current amplitude increased roughly exponentially with membrane potential in both depolarizing and hyperpolarizing directions. Our results suggest that cGMP is also the internal transmitter for phototransduction in cones.  相似文献   

11.
A Colino  J V Halliwell 《Nature》1987,328(6125):73-77
The hippocampus receives a dense serotonin-containing innervation from the divisions of the raphe nucleus. Serotonin applied to hippocampal neurons to mimic the action of endogenous transmitter often produces complex and variable responses (see for example ref. 3). Using voltage-clamp methods and new ligands that are selective for subtypes of serotonin receptors, we have been able to clarify the mechanism of serotonin action on CA1 cells in rat hippocampal slices. We describe three distinct actions of serotonin (or 5-HT) on identified K-conductances in these cells. First, it activates a Ca-independent K-current which is responsible for neuronal hyperpolarization and is inhibitory. Second, it simultaneously suppresses the slow Ca-dependent K-conductance that is largely responsible for the accommodation of cell firing in CA1 neurons: this produces a paradoxical increase in neuronal discharge in response to a depolarizing input. Third, serotonin produces a more slowly developing and long-lasting suppression of an intrinsic voltage-dependent K-conductance, Im (ref. 9), leading to neuronal depolarization and excitation. The hyperpolarizing response is mediated by class 1A serotonin receptors, whereas the other responses are not. Modulation of these different conductances by endogenously released serotonin could therefore change the probability or the duration (or both) of neuronal firing in the mammalian brain in different ways to give inhibitory, excitatory or mixed effects.  相似文献   

12.
Glutamate and Ⅱ-aminobutyric acid (GABA) are important neurotransmitters in the retinal neuronal circuitry. Using the whole-cell patch clamp technique and a rapid solution changer, glutamate and GABA receptors in the retina have been extensively investigated. Results indicate that glutamate receptors on horizontal cells may be an AMPA preferring subtype, which predominantly consists of flop splice variants. GABAA and GABAC receptors coexist in bipolar cells, with the latter showing significant desensitization. Kinetics analysis has demonstrated that the activation, deactivation and desensitization of the GABAC receptor-mediated response of these cells are overall slower than those of the GABAA response. Endogenous modulator Zn2 + in the retina has been found to differentially modulate the kinetic characteristics of the GABAC and GABAA responses.  相似文献   

13.
R W Baughman  C D Gilbert 《Nature》1980,287(5785):848-850
Earlier work has suggested that aspartate, glutamate and gamma-aminobutyric acid (GABA) act as transmitters in the cerebral cortex. There is reasonable evidence for the identity of the cell population responsible for GABA release but until now there has been little evidence concerning the sources for release of aspartate and glutamate. Here we have used two approaches to identify possible neurotransmitters used by cells in the visual cortex: measurement of the efflux of endogenous compounds in conditions of synaptic release and localization of these compounds to particular cell classes using neurotransmitter-specific histochemical techniques. Our results suggest that the acidic amino acids aspartate and glutamate may be cortical neurotransmitters, as shown by calcium-dependent release from endogenous stores and by uptake specific to pyramidal cells in layer 6 of the cortex. These substances may therefore have a role in the function of layer 6 cells, which are responsible for the recurrent projection from the cortex to the lateral geniculate nucleus and for the projection within the cortex from layer 6 to layer 4.  相似文献   

14.
Expression cloning and cDNA sequencing of the Na+/glucose co-transporter   总被引:10,自引:0,他引:10  
M A Hediger  M J Coady  T S Ikeda  E M Wright 《Nature》1987,330(6146):379-381
Organic substrates (sugars, amino acids, carboxylic acids and neutrotransmitters) are actively transported into eukaryotic cells by Na+ co-transport. Some of the transport proteins have been identified--for example, intestinal brush border Na+/glucose and Na+/proline transporters and the brain Na+/CI-/GABA transporter--and progress has been made in locating their active sites and probing their conformational states. The archetypical Na+-driven transporter is the intestinal brush border Na+/glucose co-transporter (see ref. 8), and a defect in the co-transporter is the origin of the congenital glucose-galactose malabsorption syndrome. Here we describe cloning of this co-transporter by a method new to membrane proteins. We have sequenced the cloned DNA and have found no homology between the Na+/glucose co-transporter and either the mammalian facilitated glucose carrier or the bacterial sugar transport proteins. This suggests that the mammalian Na+-driven transporter has no evolutionary relationship to the other sugar transporters.  相似文献   

15.
小脑间位核(interpositus nucleus,IN)主要接受γ-氨基丁酸(GABA)能纤维支配,同时接受组胺能纤维的调节.本研究在小脑脑片上研究了GABA和组胺对单个IN神经元电活动的共同作用.持续灌流组胺或同时施加组胺和GABA,81.2%(69/85)神经元,GABA及其激动剂的效应都被组胺削弱(持续灌流n=33;同时施加n=36).这种削弱效应能够被组胺H2受体阻断剂ranitidine(n=10)和PKA抑制剂H-89阻断(n=8),fors-kolin模拟组胺的效应(n=9).结果表明组胺和GABA对IN神经元的电活动具有交互调节作用:通过激活H2受体偶联的G-protein-AC-PKA信号通路,磷酸化GABAB和GABAA受体,降低受体功能.推测受体间的对话的工作模式,可能是整个大脑神经元活动的某些药理作用和生理活动调节的基础;如果对话紊乱,可能导致大脑功能障碍.  相似文献   

16.
C B Watt  Y Y Su  D M Lam 《Nature》1984,311(5988):761-763
In addition to conventional neurotransmitters such as acetylcholine, dopamine, glycine and gamma-aminobutyric acid (GABA), a number of peptide-immunoreactive substances have recently been localized in the vertebrate retina. The functional roles of these retinal peptides and their interactions with conventional neurotransmitters are largely unknown. We have previously shown that exogenous opiates affect both the release of GABA and the firing patterns of ganglion cells in the goldfish retina, and we have now begun a systematic characterization of the opioid pathways in the chicken retina, because, among vertebrate retinas, avian retinas contain the highest concentration of enkephalins. Monoclonal antibodies specific for enkephalin have been used to demonstrate that a subpopulation of enkephalin-containing amacrine cells exists in the chicken retina. This retina also synthesizes Met-enkephalin and releases it on cell depolarization. The enkephalin-induced inhibition of GABA release in goldfish retina led us to examine whether similar interactions occur in chicken, and if so, whether enkephalins and GABA coexist in the same amacrine cells. Our results, presented here, indicate that exogenous enkephalins do indeed inhibit GABA release in the chicken retina. Surprisingly, we found that although some amacrine cells contain both enkephalin and GABA, others contain only one or the other.  相似文献   

17.
An opiate system in the goldfish retina   总被引:5,自引:0,他引:5  
M B Djamgoz  W K Stell  C A Chin  D M Lam 《Nature》1981,292(5824):620-623
Recently, in addition to conventional neurotransmitters such as acetylcholine, dopamine, glycine and gamma-aminobutyric acid (GABA), putative neuroactive peptide transmitters have been localized to specific retinal amacrine cells. In particular, opiate receptors 2,3, assayable enkephalin immunoreactivity and enkephalin-immunoreactive neurones 1,5 have been described in avian and mammalian retinae. However, little physiological evidence has been obtained for the involvement of neuropeptides in retinal function. Here we report that exogenous opiates affect both the release of GABA from GABAergic amacrine cells and the firing patterns of ganglion cells in the goldfish retina. Our results show that the output of the retina is modulated by an opiate system whose neural organization and pharmacological properties resemble those described elsewhere in the vertebrate central nervous system.  相似文献   

18.
A site for the potentiation of GABA-mediated responses by benzodiazepines   总被引:6,自引:0,他引:6  
M A Simmonds 《Nature》1980,284(5756):558-560
The benzodiazepines have been well characterised as minor tranquillizers and attempts to explain their unique spectrum of activity have included suggestions that they may interact with a variety of neurotransmitter systems. Recently, a possible interaction with the gamma-aminobutyric acid (GABA) system has received most attention. Benzodiazepines potentiate the actions of both synaptically released and exogenously administered GABA on mammalian neuronal preparations but the site of action within the GABA response mechanism has not been determined. Binding studies suggest that benzodiazepines combine with highly specific sites in the neuronal membrane and that these sites have some indirect association with GABA receptors. To investigate this association further in a functioning GABA system, quantitative studies have been made in vitro on neuronal depolarisations mediated by GABA receptor activation. Evidence has already been presented that bicuculline is most probably a competitive antagonist at the GABA receptor while picrotoxin acts as an antagonist at a separate site. Here flurazepam is shown to attenuate preferentially the action of picrotoxin rather than bicuculline and a model is suggested for the site of action of these drugs within the GABA response mechanism.  相似文献   

19.
H W?ssle  U Grünert  J R?hrenbeck  B B Boycott 《Nature》1989,341(6243):643-646
It has long been contentious whether the large representation of the fovea in the primate visual cortex (V1) indicates a selective magnification of this part of the retina, or whether it merely reflects the density of retinal ganglion cells. The measurement of the retinal ganglion-cell density is complicated by lateral displacements of cells around the fovea and the presence of displaced amacrine cells in the ganglion cell layer. We have now identified displaced amacrine cells by GABA immunohistochemistry and by retrograde degeneration of ganglion cells. By reconstructing the fovea from serial sections, we were able to compare the densities of cones, cone pedicles and ganglion cells; in this way we found that there are more than three ganglion cells per foveal cone. Between the central and the peripheral retina, the ganglion cell density changes by a factor of 1,000-2,000, which is within the range of estimates of the cortical magnification factor. There is therefore no need to postulate a selective magnification of the fovea in the geniculate and/or the visual cortex.  相似文献   

20.
The formation of dipeptides from amino acids can be driven by hydroxyapatite at a relatively low temperature in air. For example, the formation of (Ala)2 from Ala is induced on hydroxyapatite at 110°C with considerable yield. Typically, condensing agents, high temperatures (>250°C) or high pressures (>25 MPa) are required to drive the condensation of amino acids. Similar effects are observed in the condensation of Gly, Glu and Asp. Experiments demonstrate that hydroxyapatite is an effective inorganic catalytic agent, reducing the activation barrier for the formation of dipeptides by more than 50%. HAP promotes condensation by adsorbing amino acid monomers in an organized manner, which decreases the distance between amino and carboxyl groups on neighboring molecules and extends the contact time of the reaction groups. This work provides a chemical understanding of the primitive condensation of amino acids and reveals a mechanism for enhancement of mineral catalysts. It is important that the conditions used for hydroxyapatite-assisted dipeptide formation are not harsh and can be readily achieved, revealing a possible mechanism for the chemical evolution of biomolecules over geologic ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号