首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
车牌识别系统是智能交通领域的重要组成部分,在现代交通管理中的作用举足轻重.基于VC++ 6.0进行实验,针对中国的车牌进行研究,用BP神经网络来实现车牌识别.车牌识别分为图像预处理、车牌定位、字符分割和字符识别四个步骤.利用车牌的先验知识进行定位,引进双阈值进行字符分割,利用13段特征提取法提取特征向量,实验表明该识别算法行之有效.  相似文献   

2.
车牌识别系统是智能交通领域的重要组成部分,在现代交通管理中的作用举足轻重。基于VC++6.0进行实验,针对中国的车牌进行研究,用BP神经网络来实现车牌识别。车牌识别分为图像预处理、车牌定位、字符分割和字符识别四个步骤。利用车牌的先验知识进行定位,引进双阈值进行字符分割,利用13段特征提取法提取特征向量,实验表明该识别算法行之有效。  相似文献   

3.
字符识别是自动车牌识别系统中很关键的一步.字符识别有以下几步,首先,对车牌图像进行预处理.其次,通过竖直方向投影分割字符.最后,将提取的字符特征输入网络进行训练.在实验中,利用该方法对光照不均、字符大小不一、运动背景的图像,特别是相似字符的识别获得了较高的识别率,并且将其与字符输入BP神经网络进行对比分析.实验结果表明,该方法对字符识别有很好的鲁棒性、有效性.  相似文献   

4.
由于光照不均、倾斜、模糊、字符笔画粗细不均匀、切分位置偏差因素,现有车牌识别算法的最终字符识别正确率较低。对现有几种BP字符识别算法所选取的输入特征进行改进和融合,作为BP神经网络的输入,以提高识别的准确度。通过对大量样本仿真实验,证明新特征很好地保留了字符的纹理信息,提高了BP网络对畸异字符的适应性,同时提高了综合识别率,有较高的实用价值。  相似文献   

5.
基于神经网络的车牌汉字识别方法   总被引:1,自引:0,他引:1  
为提高车牌汉字识别率,提出一种基于BP神经网络的车牌汉字识别方法。首先使用图像与处理技术对车牌汉字进行处理,包括自适应二值化、规范化、细化等;其次采用改进训练过程和参数的BP神经网络对汉字进行识别。实验结果表明,较其它算法,该算法运算速度快、自学习能力强、识别率和效率高。  相似文献   

6.
针对现有的车牌识别系统在遇到复杂条件,例如暗光、遮挡、多车牌、能见度低等情况时,难以有效地定位并识别车牌,提出了一种基于卷积神经网络的车牌自动识别系统.在车牌定位阶段综合应用3种定位方式对车牌进行初步定位检测,然后使用CNN模型对检测到的候选车牌进行判断;在车牌字符识别阶段,将分割出的字符输入到设计好的卷积神经网络模型中进行训练,得到的输出结果即为识别的车牌字符.在5906张车牌图像和非车牌图像以及36261张字符图片上的实验结果表明:提出的车牌识别系统对车牌和字符的识别率分别达到了94%和96.4%,明显优于传统的车牌识别方法,具有极高的实用性,可以满足绝大多数场景的使用需求.  相似文献   

7.
张荣梅  张琦  陈彬 《科学技术与工程》2020,20(12):4775-4779
传统的车牌识别算法包括模板匹配、特征统计等方法,但是这些算法依赖于人工提取图像特征,识别准确率低。卷积神经网络LeNet-5算法能够自动提取车牌图像的特征,提高车牌识别准确率。但是目前基于LeNet-5网络结构的车牌识别算法存在识别不完整,运算时间长等缺点。提出基于改进的LeNet-5网络的车牌识别算法,该算法将输入车牌字符图像归一化为32×16大小,并通过删除传统LeNet-5网络中的C5层、修改输出层中神经元个数等,将车牌字符按照汉字和数字/字母的形式识别输出。通过采集大量车牌数据进行训练验证,结果表明:与前人改进的LeNet-5网络结构相比,本文算法在识别率和时间效率上均得到了提高。  相似文献   

8.
就机动车牌照的字符识别与处理进行了详细的讨论,重点讨论了BP神经网络方法在机动车牌照字符识别中的应用,用Visual C++完成了对机动车牌照字符识别的模拟,最后给出实验结果。  相似文献   

9.
针对传统车牌检测方法定位不准确、检测结果易受环境影响的问题,提出一种基于Faster R-CNN和Inception ResNetv2的车牌检测算法:通过迁移学习的方式实现精确的车牌定位,用像素点统计法处理车牌图像,实现单个字符的有效提取;mLeNet5卷积神经网络模型用于对单字符进行识别.结果表明,算法对有遮挡及角度倾斜的车牌字符能实现高效、高精确度的识别.  相似文献   

10.
基于粗糙集的车牌字符识别方法   总被引:4,自引:0,他引:4  
提出了一种基于粗糙集理论的车牌字符识别的方法,通过粗糙集的属性约简,有效地压缩了图像的特征数目,提高了运行效率,并且采用基于影响因子的图像判别算法,有效地提高了识别的准确率.以在高速公路收费站实地拍摄的车牌图像为样本,经过车牌的定位、分割,以及字符的分割,选取其中的300幅字符图像作为训练集,100幅字符图像作为测试集,实验结果表明:将训练集图像作为输入,正确识别率为100%;将测试集作为输入,正确识别率为86%。  相似文献   

11.
针对车牌识别中的字符识别问题,提出了一种改进的模板匹配方法,首先把字符模板根据某种特征进行粗分类,特征类似的分到同一组,识别时首先提取字符的这种特征,根据特征提取相应分组的模板进行匹配,最后给出识别结果。  相似文献   

12.
作者将支持向量机SVM方法用于车牌字符的识别.算法首先采用Gabor变换和外围轮廓结构特征提取的方法提取车牌字符图像的特征参数,然后采用提取的特征训练SVM分类器,再应用SVM分类器分类和判别车牌字符.实验表明这种方法具有良好的车牌识别效果,较强的鲁棒性,较大的应用价值.  相似文献   

13.
针对过去车牌定位难的问题,提出了一种基于神经网络的车牌定位方法,算法通过神经网络训练、图像预处理以及用训练好的网络进行车牌的定位,依照上述算法对编制的软件检验,从测试的 600 幅 320×240(像素×像素)汽车图像,正确率达到了 95.1%,每幅图像的运行时间小于 2s,基本上达到了实时处理的要求。  相似文献   

14.
研究了车牌字符识别问题,针对车牌识别系统易受天气及光照变化影响的实际应用,将Gabor特征和协同神经网络应用在车牌字符识别中,提高了识别率.首先对车牌字符进行二值化和切分,然后利用Gabor滤波器提取车牌字符的特征参数;再利用协同模式训练特征参数,进而得出训练样本;最后根据协同神经网络进一步识别车牌字符.通过大量仿真实验表明,该方法在不同场景、光照条件下,与传统方法相比,识别率有了较大改进,该方法在车牌识别领域有较强的实用性.  相似文献   

15.
汽车牌照区域分割是牌照识别的关键步骤,增强图像中的牌照区域,抑制背景区域,可以有效降低牌照区域分割的难度。将图像分解为一组二值图像的组合,然后在二值图像上计算各连通分量及其特征参数,利用牌照区域和背景区域对应的连通分量的特征差别,可以有效抑制背景而保留牌照。处理后的二值图像可重构出牌照区域被增强的图像。还采用等高线标记代替连通分量标记,以减少计算量,使得算法具有实用性。试验表明,这种算法有效地突出了牌照区域而抑制了背景,提高了牌照定位分割的效果,可以很好地用于实际的汽车牌照识别系统中。  相似文献   

16.
车牌识别系统是以汽车牌照为特定目标的专用计算机视觉系统,是智能交通系统的重要组成部分.介绍了一种基于Visual C++平台与Intel开源计算机视觉库OpenCV的静态复杂背景下的车牌识别系统的开发方式.该方式中采用空间域滤波和形态学方法确定车牌的轮廓,采用频域、空间域分析和几何校正相结合的方法对车牌歪斜情况进行校正,最后通过字符分割和模板匹配实现车牌号码识别.经在Visual C++平台下验证,此方法适用于车牌歪斜的情况,识别速度快,准确率高.  相似文献   

17.
汽车牌照自动识别中二值化方法的研究   总被引:4,自引:0,他引:4  
赵宏  王丽敏  王工艺 《应用科技》2004,31(3):15-16,19
在车牌图像处理过程中,首先遇到的问题就是图像二值化.针对汽车牌照的特点,介绍了一种新的二值化阈值方法,此方法借鉴了P片法的二值化思想,不仅充分考虑了车牌自身的特点,同时融入对直方图形态的考虑,能准确找到双峰直方图的波谷位置.并与Otsu算法和另一种全局动态阈值算法作了比较,从结果上看执行效果较好.  相似文献   

18.
一种基于Adaboost的车牌定位算法   总被引:1,自引:0,他引:1  
针对成像过程的光照影响以及车辆的污损对车牌定位影响较大的情况,提出了一种基于Adaboost的车牌定位算法.该算法首先将车牌彩色图像进行预处理,然后使用Adaboost算法进行车牌定位,最后使用车牌颜色模型对车牌定位结果进行校验.相对于目前用于车牌定位的方法,该算法具有较快的定位速度和较高的准确率.实验证明,采用该算法能获得较好的车牌定位效果,鲁棒性强,具有较大的实用价值.  相似文献   

19.
采用云计算的方法将汉字的笔画引入汽车车牌识别系统中,通过提取运动汽车的车牌图像,对车牌字符进行准确识别与输出.该识别系统识别准确、效率高,不仅可以准确有效识别汽车车牌,而且可以通过云计算进行数据的后期处理并实现输出结果资源共享,为实现交通智能化管理提供帮助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号