首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stano NM  Jeong YJ  Donmez I  Tummalapalli P  Levin MK  Patel SS 《Nature》2005,435(7040):370-373
Helicases are molecular motors that use the energy of nucleoside 5'-triphosphate (NTP) hydrolysis to translocate along a nucleic acid strand and catalyse reactions such as DNA unwinding. The ring-shaped helicase of bacteriophage T7 translocates along single-stranded (ss)DNA at a speed of 130 bases per second; however, T7 helicase slows down nearly tenfold when unwinding the strands of duplex DNA. Here, we report that T7 DNA polymerase, which is unable to catalyse strand displacement DNA synthesis by itself, can increase the unwinding rate to 114 base pairs per second, bringing the helicase up to similar speeds compared to its translocation along ssDNA. The helicase rate of stimulation depends upon the DNA synthesis rate and does not rely on specific interactions between T7 DNA polymerase and the carboxy-terminal residues of T7 helicase. Efficient duplex DNA synthesis is achieved only by the combined action of the helicase and polymerase. The strand displacement DNA synthesis by the DNA polymerase depends on the unwinding activity of the helicase, which provides ssDNA template. The rapid trapping of the ssDNA bases by the DNA synthesis activity of the polymerase in turn drives the helicase to move forward through duplex DNA at speeds similar to those observed along ssDNA.  相似文献   

2.
大肠杆菌染色体具唯一一个复制原点叫oriC.在oriC上染色体的复制起始是个严格控制的细胞过程.首先,复制起始蛋白DnaA与oriC上DnaA框相互作用,使DNA分子弯曲,并在IHF和HU等蛋白的帮助下,使oriC双链DNA在其富含AT区解链,便起始复制.DnaA蛋白有两种形式,即ATP-DnaA和ADP-DnaA,前者有复制起始活性,后者则没有.DnaA蛋白浓度的提高和由DRAS使ADP-DnaA激活为ATP-DnaA都会导致额外的复制起始,说明ATP-DnaA是个复制起始正调控因子.DiaA蛋白通过与ATP-DnaA的相互作用来促使ATPDnaA-oriC复合物的形成,从而激发复制起始.然而,在每个细胞周期中,DNA复制起始只发生一次.有不同的分子机制抑制在同一个细胞周期的同一复制原点上重复起始复制.1)复制原点的隔绝防止复制起始.由SeqA蛋白结合在oriC中半甲基化的多个GATC位点,使oriC失去复制起始活性;2)由RIDA使ATP-DnaA降解为ADP-DnaA,使DnaA失去复制起始活性;3)Dps蛋白抑制依赖DnaA蛋白的oriC解链;4)datA序列通过降低作用于oriC的DnaA可用量来延缓复制起始时间.显然,一个复杂的调控网络控制着复制起始.本文回顾、总结和分析了大肠杆菌复制起始调控机制.  相似文献   

3.
D T Denhardt 《Nature》1979,280(5719):196-198
  相似文献   

4.
Serebrov V  Pyle AM 《Nature》2004,430(6998):476-480
The NS3 helicase is essential for cytoplasmic RNA replication by the hepatitis C virus, and it is a representative member of helicase superfamily 2 (SF2). NS3 is an important model system for understanding unwinding activities of DExH/D proteins, and it has been the subject of extensive structural and mutational analyses. Despite intense interest in NS3, the molecular and kinetic mechanisms for RNA unwinding by this helicase have remained obscure. We have developed a combinatorial, time-resolved approach for monitoring the microscopic behaviour of a helicase at each nucleotide of a duplex substrate. By applying this analysis to NS3, we have independently established the 'physical' and 'kinetic' step size for unwinding of RNA (18 base pairs, in each case), which we relate to the stoichiometry of the functional, translocating species. Having obtained microscopic unwinding rate constants at each position along the duplex, we demonstrate that NS3 unwinds RNA through a highly coordinated cycle of fast ripping and local pausing that occurs with regular spacing along the duplex substrate, much like the stepping behaviour of cytoskeletal motor proteins.  相似文献   

5.
Dumont S  Cheng W  Serebrov V  Beran RK  Tinoco I  Pyle AM  Bustamante C 《Nature》2006,439(7072):105-108
Helicases are a ubiquitous class of enzymes involved in nearly all aspects of DNA and RNA metabolism. Despite recent progress in understanding their mechanism of action, limited resolution has left inaccessible the detailed mechanisms by which these enzymes couple the rearrangement of nucleic acid structures to the binding and hydrolysis of ATP. Observing individual mechanistic cycles of these motor proteins is central to understanding their cellular functions. Here we follow in real time, at a resolution of two base pairs and 20 ms, the RNA translocation and unwinding cycles of a hepatitis C virus helicase (NS3) monomer. NS3 is a representative superfamily-2 helicase essential for viral replication, and therefore a potentially important drug target. We show that the cyclic movement of NS3 is coordinated by ATP in discrete steps of 11 +/- 3 base pairs, and that actual unwinding occurs in rapid smaller substeps of 3.6 +/- 1.3 base pairs, also triggered by ATP binding, indicating that NS3 might move like an inchworm. This ATP-coupling mechanism is likely to be applicable to other non-hexameric helicases involved in many essential cellular functions. The assay developed here should be useful in investigating a broad range of nucleic acid translocation motors.  相似文献   

6.
随着基因治疗和基因疫苗的发展,急需大量的非病毒载体质粒DNA.主要对重组大肠杆菌E.coli DH5α发酵生产pUC21二倍体质粒的培养基组分和补料分批培养的葡萄糖流加策略进行了研究.初步确定的培养基组分是以葡萄糖作碳源,酵母粉作氮源,并且添加磷酸盐、硫酸镁、柠檬酸和微量元素.研究发现溶氧反馈流加是比较好的流加葡萄糖的补料策略,它能把葡萄糖浓度控制在较低的水平,从而避免产生乙酸效应.溶氧反馈流加发酵的最大生物量可达30.84 g/L,质粒pUC21-Dimer的最大产量达96.38 mg/L.该研究为重组大肠杆菌生产二聚体质粒建立了优化工艺,对大规模生产作为基因治疗的多聚体质粒具有指导意义.  相似文献   

7.
8.
RecBCD enzyme is a processive DNA helicase and nuclease that participates in the repair of chromosomal DNA through homologous recombination. We have visualized directly the movement of individual RecBCD enzymes on single molecules of double-stranded DNA (dsDNA). Detection involves the optical trapping of solitary, fluorescently tagged dsDNA molecules that are attached to polystyrene beads, and their visualization by fluorescence microscopy. Both helicase translocation and DNA unwinding are monitored by the displacement of fluorescent dye from the DNA by the enzyme. Here we show that unwinding is both continuous and processive, occurring at a maximum rate of 972 +/- 172 base pairs per second (0.30 microm s(-1)), with as many as 42,300 base pairs of dsDNA unwound by a single RecBCD enzyme molecule. The mean behaviour of the individual RecBCD enzyme molecules corresponds to that observed in bulk solution.  相似文献   

9.
Methylating agents generate cytotoxic and mutagenic DNA damage. Cells use 3-methyladenine-DNA glycosylases to excise some methylated bases from DNA, and suicidal O(6)-methylguanine-DNA methyltransferases to transfer alkyl groups from other lesions onto a cysteine residue. Here we report that the highly conserved AlkB protein repairs DNA alkylation damage by means of an unprecedented mechanism. AlkB has no detectable nuclease, DNA glycosylase or methyltransferase activity; however, Escherichia coli alkB mutants are defective in processing methylation damage generated in single-stranded DNA. Theoretical protein fold recognition had suggested that AlkB resembles the Fe(ii)- and alpha-ketoglutarate-dependent dioxygenases, which use iron-oxo intermediates to oxidize chemically inert compounds. We show here that purified AlkB repairs the cytotoxic lesions 1-methyladenine and 3-methylcytosine in single- and double-stranded DNA in a reaction that is dependent on oxygen, alpha-ketoglutarate and Fe(ii). The AlkB enzyme couples oxidative decarboxylation of alpha-ketoglutarate to the hydroxylation of these methylated bases in DNA, resulting in direct reversion to the unmodified base and the release of formaldehyde.  相似文献   

10.
Replication of Escherichia coli requires DNA polymerase I   总被引:15,自引:0,他引:15  
R M Olivera  E Bonhoeffer 《Nature》1974,250(5466):513-514
  相似文献   

11.
Uptake of Escherichia coli DNA into HeLa cells enhanced by amphotericin B   总被引:4,自引:0,他引:4  
B V Kumar  G Medoff  G Kobayashi  D Schlessinger 《Nature》1974,250(464):323-325
  相似文献   

12.
13.
Stimulation of protein-directed strand exchange by a DNA helicase   总被引:1,自引:0,他引:1  
T Kodadek  B M Alberts 《Nature》1987,326(6110):312-314
The protein-mediated exchange of strands between a DNA double helix and a homologous DNA single strand involves both synapsis and branch migration, which are two important aspects of any general recombination reaction. Purified DNA-dependent ATPases from Escherichia coli (recA protein), Ustilago (rec 1 protein) and phage T4 (uvsX protein) have been shown to drive both synapsis and branch migration in vitro. The T4 gene 32 protein is a helix-destabilizing protein that greatly stimulates uvsX-protein-catalysed synapsis, and the E. coli SSB (single-strand binding) protein stimulates the analogous recA-protein-mediated reaction to a lesser degree. One suspects that several other proteins also play a role in the strand exchange process. For example, a DNA helicase could in principle accelerate branch migration rates by helping to melt the helix at the branch point. The T4 dda protein is a DNA helicase that is required to move the T4 replication fork past DNA template-bound proteins in vitro. Previously, we have shown that the dda protein binds to a column that contains immobilized T4 uvsX protein. We show here that this helicase specifically stimulates the branch migration reaction that the uvsX protein catalyses as a central part of the genetic recombination process in a T4 bacteriophage-infected cell.  相似文献   

14.
Inducible repair of oxidative DNA damage in Escherichia coli   总被引:9,自引:0,他引:9  
B Demple  J Halbrook 《Nature》1983,304(5925):466-468
Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.  相似文献   

15.
M Koiyama  A R Kolber 《Nature》1970,228(5277):1157-1160
  相似文献   

16.
W G McKenna  M Masters 《Nature》1972,240(5383):536-539
  相似文献   

17.
Falnes PØ  Johansen RF  Seeberg E 《Nature》2002,419(6903):178-182
The bacterial AlkB protein is known to be involved in cellular recovery from alkylation damage; however, the function of this protein remains unknown. AlkB homologues have been identified in several organisms, including humans, and a recent sequence alignment study has suggested that these proteins may belong to a superfamily of 2-oxoglutarate-dependent and iron-dependent oxygenases (2OG-Fe(ii)-oxygenases). Here we show that AlkB from Escherichia coli is indeed a 2-oxoglutarate-dependent and iron-dependent DNA repair enzyme that releases replication blocks in alkylated DNA by a mechanism involving oxidative demethylation of 1-methyladenine residues. This mechanism represents a new pathway for DNA repair and the third type of DNA damage reversal mechanism so far discovered.  相似文献   

18.
初步摸索大肠杆菌DH 5α生产核酸疫苗的发酵条件。通过均匀试验设计确定,当胰蛋白胨与酵母粉的质量比为1∶1.2,并且磷酸盐的加量较大时菌体的质粒产量较高。在菌体生长刚进入对数生长期时采用指数式流加葡萄糖与采用恒速流加葡萄糖,菌体得率相同,而产物收率前者高于后者。在菌体生长进入平稳期时将温度由37°C升高到42°C,在菌体密度没有改变的情况下,质粒产量得到提高,达到75 m g/L。  相似文献   

19.
20.
利用微波炉和煮沸法快速制备大肠杆菌基因组DNA PCR模板   总被引:3,自引:0,他引:3  
利用微波炉和煮沸法可以简单、快速、有效地制备大肠杆菌基因组DNA PCR模板.用该模板做PCR具有很高的效率和良好的特异性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号