首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
At the moment of insemination millions of mammalian sperm cells are released into the female reproductive tract in order to find a single cell – the oocyte. The spermatozoa subsequently ignore the thousands of cells they make contact with during their journey to the site of fertilisation, until they reach the surface of the oocyte. At this point, they bind tenaciously to the acellular coat, known as the zona pellucida, that surrounds the oocyte and initiate the chain of cellular interactions that will culminate in fertilization. These exquisitely cell- and species-specific recognition events are among the most strategically important cellular interactions in biology. Understanding the cellular and molecular mechanisms that underpin them has implications for diagnosis of the aetiology of human infertility and the development of novel targets for fertility regulation. Herein, we describe two models indicating the plethora of highly orchestrated molecular interactions underlying successful sperm zona binding and sperm oocyte fusion. Received 17 December 2006; received after revision 31 January 2007; accepted 16 March 2007  相似文献   

2.
Complex diseases arise from a combination of heritable and environmental factors. The contribution made by environmental factors may be mediated through epigenetics. Epigenetics is the study of changes in gene expression that occur without a change in DNA sequence and are meiotically or mitotically heritable. Such changes in gene expression are achieved through the methylation of DNA, the post-translational modifications of histone proteins, and RNA-based silencing. Epigenetics has been implicated in complex diseases such as cancer, schizophrenia, bipolar disorder, autism and systemic lupus erythematosus. The prevalence and severity of these diseases may be influenced by factors that affect the epigenotype, such as ageing, folate status, in vitro fertilization and our ancestors’ lifestyles. Although our understanding of the role played by epigenetics in complex diseases remains in its infancy, it has already led to the development of novel diagnostic methods and treatments, which augurs well for its future health benefits. Received 6 December 2006; received after revision 29 January 2007; accepted 15 March 2007  相似文献   

3.
The BAG (Bcl-2 associated athanogene) family is a multifunctional group of proteins that perform diverse functions ranging from apoptosis to tumorigenesis. An evolutionarily conserved group, these proteins are distinguished by a common conserved region known as the BAG domain. BAG genes have been found in yeasts, plants, and animals, and are believed to function as adapter proteins forming complexes with signaling molecules and molecular chaperones. In humans, a role for BAG proteins has been suggested in carcinogenesis, HIV infection, and Parkinson’s disease. These proteins are therefore potential therapeutic targets, and their expression in cells may serve as a predictive tool for such diseases. In plants, the Arabidopsis thaliana genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. Three members contain a calmodulin-binding domain possibly reflecting differences between plant and animal programmed cell death. This review summarizes current understanding of BAG proteins in both animals and plants. Received 21 November 2007; received after revision 17 December 2007; accepted 2 January 2008  相似文献   

4.
γ-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of γ-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on γ-secretase, an I-CLiP closely linked to the etiology of Alzheimer’s disease. A large body of emerging data allows us to survey the substrates of γ-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of γ-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of γ-secretase and its most prominent substrate, the amyloid precursor protein. Received 4 October 2007; received after revision 1 December 2007; accepted 7 December 2007  相似文献   

5.
The extravasation of leukocytes and tumor cells is a multi-step process with the involvement of various adhesion molecules depending on the three steps rolling, adhesion, and diapedesis. We have developed an in vitro model, by which we investigated the rolling and adhesion of neutrophil granulocytes and MDA-MB-468 human breast carcinoma cells to lung endothelial cells under physiological flow-conditions. We found that norepinephrine had an inhibitory function on the fMLP-promoted adhesion of neutrophil granulocytes due to a down-regulation of β2-integrin. Furthermore, neutrophil granulocytes serve as linking cells for the interaction of the MDA-MB-468 cells with the endothelium, which are both β2-integrin negative, but express the β2-integrin ligand ICAM-1. In addition, we show here that N-cadherin is up-regulated on the endothelial cells and on neutrophil granulocytes in response to fMLP. This up-regulation resulted in a significant increase of adherent MDA-MB-468 cells, which are also N-cadherin positive. Received 3 September 2007; received after revision 17 October 2007; accepted 22 October 2007  相似文献   

6.
In renal carcinoma cells (RCC4) hypoxia inducible factor-1 (HIF-1) is constitutively expressed due to a von Hippel Lindau protein deficiency, but can be degraded by calpain, independently of the 26S proteasome, when exposed to hypoxia/nitric oxide (NO). In this study we examined molecular mechanisms to explain calpain activation. The inability of hypoxia/NO to degrade HIF-1α in respiratory-deficient RCC4-ρ0 cells pointed to the requirement for mitochondria-derived reactive oxygen species. A prerequisite for O 2 in combination with NO to destabilize HIF-1α was corroborated in RCC4-p0 cells, when the redox cycler 2,3-dimethoxy-1,4-naphthoquinone was used as a source of superoxide. Degradation of HIF-1α required intracellular calcium transients and calpain activation. Using uric acid to interfere with signal transmission elicited by NO/O 2 blocked HIF-1α degradation and attenuated a calcium increase. We conclude that an oxidative signal as a result of NO/O 2 coformation triggers a calcium increase that activates calpain to degrade HIF-1α, independently of the proteasome. Received 14 August 2007; received after revision 4 October 2007; accepted 22 October 2007  相似文献   

7.
The life of aerobes is dependent on iron and oxygen for efficient bioenergetics. Due to potential risks associated with iron/oxygen chemistry, iron acquisition, concentration, storage, utilization, and efflux are tightly regulated in the cell. A central role in regulating iron/oxygen chemistry in animals is played by mRNA translation or turnover via the iron responsive element (IRE)/iron regulatory protein (IRP) system. The IRE family is composed of three-dimensional RNA structures located in 3′ or 5′ untranslated regions of mRNA. To date, there are 11 different IRE mRNAs in the family, regulated through translation initiation or mRNA stability. Iron or oxidant stimuli induce a set of graded responses related to mRNA-specific IRE substructures, indicated by differential responses to iron in vivo and binding IRPs in vitro. Molecular effects of phosphorylation, iron and oxygen remain to be added to the structural information of the IRE-RNA and IRP repressor in the regulatory complex. Received 21 April 2007; received after revision 13 July 2007; accepted 2 August 2007  相似文献   

8.
Hippocrates’ assertion that ‘what the lance does not heal, fire will’ underscores the fact that for thousands of years heat has been used to treat a variety of diseases, including cancer. Indeed, spontaneous tumor remission has been observed in patients following feverish infection [1], and expression of activated oncogenes, such as Ras, can render tumor cells sensitive to heat compared with normal cells [2, 3]. In the past, a primary drawback to the use of heat as a clinical therapy was the inability to selectively focus heat to tumors in situ. Of late, however, several approaches have been devised to deliver heat more precisely, including the use of heated nanoparticles, making hyperthermia a more clinically tractable treatment option [4, 5]. Despite these practical advances, the mechanisms responsible for heat shock-induced cell death remain controversial and ill-defined. In this Visions and Reflections we discuss recent findings surrounding the initiation of heat shock-induced apoptosis, and propose future areas of research. Received 17 March 2007; received after revision 25 April 2007; accepted 22 May 2007  相似文献   

9.
We have proposed a chemical chaperone therapy for lysosomal diseases, based on a paradoxical phenomenon that an exogenous competitive inhibitor of low molecular weight stabilizes the target mutant molecule and restores its catalytic activity as a molecular chaperone intracellularly. After Fabry disease experiments, we investigated a new synthetic chaperone compound N-octyl-4-epi-β-valienamine (NOEV) in a GM1-gangliosidosis model mice. Orally administered NOEV entered the brain through the blood-brain barrier, enhanced β-galactosidase activity, reduced the substrate storage, and clinically improved neurological deterioration. We hope that chemical chaperone therapy will prove useful for some patients with GM1-gangliosidosis and potentially other lysosomal storage diseases with central nervous system involvement. Received 10 October 2007; received after revision 31 October 2007; accepted 6 November 2007  相似文献   

10.
Spermatozoa generated in the testis are immature and incompetent for fertilization. During their journey toward the egg, the sperm acquire fertility and achieving fertilization. These sperm modifications to ensure fertilization are induced by many female or male extra-sperm factors: for example, sperm motility-activating factors from the egg jelly, sperm attractants from the eggs, and decapacitation factors from the seminal plasma. The factors controlling sperm fertility are myriad and species specific; they may be peptides, sugar chains, or small organic compounds. Nevertheless, the fundamental mechanisms underlying fertilization must be common among all animals; increase in [Ca2+]i triggers all the steps in the process of fertilization, and cAMP plays important roles in many steps. Elucidating the dynamic functional and morphological changes in sperm cells is important for understanding the regulation of fertilization. Here, we introduce the diversity and generality of the control of sperm fertility. Received 28 April 2008; received after revision 13 June 2008; accepted 17 June 2008  相似文献   

11.
Do cells think?     
A microorganism has to adapt to changing environmental conditions in order to survive. Cells could follow one of two basic strategies to address such environmental fluctuations. On the one hand, cells could anticipate a fluctuating environment by spontaneously generating a phenotypically diverse population of cells, with each subpopulation exhibiting different capacities to flourish in the different conditions. Alternatively, cells could sense changes in the surrounding conditions – such as temperature, nutritional availability or the presence of other individuals – and modify their behavior to provide an appropriate response to that information. As we describe, examples of both strategies abound among different microorganisms. Moreover, successful application of either strategy requires a level of memory and information processing that has not been normally associated with single cells, suggesting that such organisms do in fact have the capacity to ‘think’. Received 3 January 2007; accepted 4 April 2007  相似文献   

12.
Research on aging in model organisms has revealed different molecular mechanisms involved in the regulation of the lifespan. Studies on Saccharomyces cerevisiae have highlighted the role of the Sir2 family of genes, human Sirtuin homologs, as the longevity factors. In Caenorhabditis elegans, the daf-16 gene, a mammalian homolog of FoxO genes, was shown to function as a longevity gene. A wide array of studies has provided evidence for a role of the activation of innate immunity during aging process in mammals. This process has been called inflamm-aging. The master regulator of innate immunity is the NF-κB system. In this review, we focus on the several interactions of aging-associated signaling cascades regulated either by Sirtuins and FoxOs or NF-κB signaling pathways. We provide evidence that signaling via the longevity factors of FoxOs and SIRT1 can inhibit NF-κB signaling and simultaneously protect against inflamm-aging process. Received 4 October 2007; received after revision 7 November 2007; accepted 9 November 2007  相似文献   

13.
During the last decade, interest has grown in the beneficial effects of non-steroidal anti-inflammatory drugs (NSAIDs) in neurodegeneration, particularly in pathologies such as Alzheimer’s (AD) and Parkinson’s (PD) disease. Evidence from epidemiological studies has indicated a decreased risk for AD and PD in patients with a history of chronic NSAID use. However, clinical trials with NSAIDs in AD patients have yielded conflicting results, suggesting that these drugs may be beneficial only when used as preventive therapy or in early stages of the disease. NSAIDs may also have salutary effects in other neurodegenerative diseases with an inflammatory component, such as multiple sclerosis and amyotrophic lateral sclerosis. In this review we analyze the molecular (cyclooxygenases, secretases, NF-κB, PPAR, or Rho-GTPasas) and cellular (neurons, microglia, astrocytes or endothelial cells) targets of NSAIDs that may mediate the therapeutic function of these drugs in neurodegeneration. Received 4 December 2006; received after revision 24 January 2007; accepted 23 February 2007  相似文献   

14.
γ-Hemolysins are pore-forming toxins which develop from water-soluble monomers by combining two different ‘albeit homologous’ proteins. They form oligomeric pores in both cell and model membranes by undergoing a still poorly understood conformational rearrangement in the stem region. The stem is formed by three β-strands, folded onto the core of the soluble protein and completely extended in the pore. We propose a new model to explain such a process. Seven double-cysteine mutants were developed by inserting one cysteine on the stretch that links the β-hairpin to the core of the protein and another on different positions along the β-strands. The membrane bound protein was blocked in a non-lytic state by S–S bond formation. Six mutants were oxidized as inactive intermediates, but became active after adding DTT. These results demonstrate that the stem extension can be temporarily frozen and that the β-barrel formation occurs by β-strand concerted step-by-step sliding. Received 22 October 2007; received after revision 15 November 2007; accepted 19 November 2007  相似文献   

15.
Among the scorpion venom components whose function are poorly known or even show contrasting pharmacological results are those called “orphan peptides”. The most widely distributed are named β-KTx or scorpine-like peptides. They contain three disulfide bridges with two recognizable domains: a freely moving N-terminal amino acid sequence and a tightly folded C-terminal region with a cysteine-stabilized α/β (CS-αβ) motif. Four such peptides and three cloned genes are reported here. They were assayed for their cytolytic, antimicrobial and K + channel-blocking activities. Two main characteristics were found: the existence of an unusual structural and functional diversity, whereby the full-length peptide can lyse cells or kill microorganisms, and a C-terminal domain containing the CS-αβ motif that can block K + channels. Furthermore, sequence analyses and phylogenetic reconstructions are used to discuss the evolution of this type of peptide and to highlight the versatility of the CS-αβ structures. Received 13 August 2007; received after revision 30 October 2007; accepted 2 November 2007  相似文献   

16.
The compositional difference in microbial and human cell membranes allows antimicrobial peptides to preferentially bind microbes. Peptides which specifically target lipopolysaccharide (LPS) and palmitoyl-oleoyl-phosphatidylglycerol (POPG) are efficient antibiotics. From the core LPS-binding region of Factor C, two 34-mer Sushi peptides, S1 and S3, were derived. S1 functions as a monomer, while S3 is active as a dimer. Both S1 and S3 display detergent-like properties in disrupting LPS aggregates, with specificity for POPG resulting from electrostatic and hydrophobic forces between the peptides and the bacterial lipids. During interaction with POPG, the S1 transitioned from a random coil to an α-helix, while S3 resumed a mixture of α-helix and β-sheet structures. The unsaturated nature of POPG confers fluidity and enhances insertion of the peptides into the lipid bilayer, causing maximal disruption of the bacterial membrane. These parameters should be considered in designing and developing new generations of peptide antibiotics with LPS-neutralizing capability. Received 2 October 2007; received after revision 2 November 2007; accepted 4 December 2007 J. L. Ding, B. Ho: Co-senior authors.  相似文献   

17.
Parkinson’s disease (PD) is characterized by the death of dopaminergic neurons and the presence of Lewy bodies in the substantia nigra pars compacta. The mechanisms involved in the death of neurons as well as the role of Lewy bodies in the pathogenesis of the disease are still unclear. Lewy bodies are made of aggregated proteins, in which α-synuclein represents their major component. α-Synuclein interacts with synphilin-1, a protein that is also present in Lewy bodies. When expressed in cells, synphilin-1 forms inclusions together with α-synuclein that resemble Lewy bodies. Synphilin-1 is ubiquitylated by various E3 ubiquitin-ligases, such as SIAH, parkin and dorfin. Ubiquitylation of synphilin-1 by SIAH is essential for its aggregation into inclusions. We recently identified a new synphilin-1 isoform, synphilin-1A, that is toxic to neurons, aggregation-prone and accumulates in detergent-insoluble fractions of brains from α-synucleinopathy patients. Synphilin-1A inclusions recruit both α-synuclein and synphilin-1. Aggregation of synphilin-1 and synphilin-1A seems to be protective to cells. We now discuss several aspects of the neurobiology and pathology of synphilin-1 isoforms, focusing on possible implications for PD. Received 26 July 2007; received after revision 19 September 2007; accepted 15 October 2007  相似文献   

18.
In this study we have assessed the effect of testosterone (T), dihydrotestosterone (DHT) and 5αandrostan-3α, 17β-diol (3α-diol) therapies on diabetic neuropathy. Diabetes was induced in adult male rats by the injection of streptozotocin and resulted in decreased T and increased 3α-diol levels in plasma and in decreased levels of pregnenolone and DHT in the sciatic nerve. Moreover, a reduced expression of the enzyme converting Tinto DHT (i.e., the 5α-reductase) also occurs at the level of sciatic nerve, suggesting that the decrease of DHT levels could be due to an impairment of this enzyme. Chronic treatment for 1 month with DHT or 3α-diol increased tail nerve conduction velocity and partially counteracted the increase of thermal threshold induced by diabetes. Treatment with DHT increased tibial Na+,K+-ATPase activity and the expression of myelin protein P0 in the sciatic nerve.DHT, 3α-diol and T reversed the reduction of intra-epidermal nerve fiber density induced by diabetes. These observations indicate that T metabolites can reverse behavioral, neurophysiological, morphological and biochemical alterations induced by peripheral diabetic neuropathy. I. Roglio, R. Bianchi: These authors contributed equally to this study. Received 4 January 2007; received after revision 13 February 2007; accepted 27 March 2007  相似文献   

19.
The pathomechanism of antibody-mediated tissue damage in autoimmune diseases can be best studied in experimental models by passively transferring specific autoantibodies into animals. The reproduction of the disease in animals depends on several factors, including the cross-reactivity of patient autoantibodies with the animal tissue. Here, we show that autoantibodies from patients with epidermolysis bullosa acquisita (EBA), a subepidermal autoimmune blistering disease, recognize multiple epitopes on murine collagen VII. Indirect immunofluorescence microscopy revealed that EBA patients’ IgG cross-reacts with mouse skin. Overlapping, recombinant fragments of murine collagen VII were used to characterize the reactivity of EBA sera and to map the epitopes on the murine antigen by ELISA and immunoblotting. The patients’ autoantibody binding to murine collagen VII triggered pathogenic events as demonstrated by a complement fixing and an ex vivo granulocyte-dependent dermal–epidermal separation assay. These findings should greatly facilitate the development of improved disease models and novel therapeutic strategies.  相似文献   

20.
ζ-crystallins constitute a family of proteins with NADPH:quinone reductase activity found initially in mammalian lenses but now known to be present in many other organisms and tissues. Few proteins from this family have been characterized, and their function remains unclear. In the present work, ζ-crystallins from human and yeast (Zta1p) were expressed, purified and characterized. Both enzymes are able to reduce ortho-quinones in the presence of NADPH but are not active with 2-alkenals. Deletion of the ZTA1 gene makes yeast more sensitive to menadione and hydrogen peroxide, suggesting a role in the oxidative stress response. The human and yeast enzymes specifically bind to adenine-uracil rich elements (ARE) in RNA, indicating that both enzymes are ARE-binding proteins and that this property has been conserved in ζ-crystallins throughout evolution. This supports a role for ζ-crystallins as trans-acting factors that could regulate the turnover of certain mRNAs. Received 21 February 2007; received after revision 16 April 2007; accepted 23 April 2007 M. R. Fernández, S. Porté: These authors contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号