首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dec1 and Dec2 are regulators of the mammalian molecular clock   总被引:23,自引:0,他引:23  
Honma S  Kawamoto T  Takagi Y  Fujimoto K  Sato F  Noshiro M  Kato Y  Honma K 《Nature》2002,419(6909):841-844
  相似文献   

2.
3.
Liu C  Li S  Liu T  Borjigin J  Lin JD 《Nature》2007,447(7143):477-481
  相似文献   

4.
5.
6.
7.
8.
9.
Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.  相似文献   

10.
A role for casein kinase 2alpha in the Drosophila circadian clock   总被引:15,自引:0,他引:15  
Lin JM  Kilman VL  Keegan K  Paddock B  Emery-Le M  Rosbash M  Allada R 《Nature》2002,420(6917):816-820
  相似文献   

11.
B Zheng  D W Larkin  U Albrecht  Z S Sun  M Sage  G Eichele  C C Lee  A Bradley 《Nature》1999,400(6740):169-173
Circadian rhythms are driven by endogenous biological clocks that regulate many biochemical, physiological and behavioural processes in a wide range of life forms. In mammals, there is a master circadian clock in the suprachiasmatic nucleus of the anterior hypothalamus. Three putative mammalian homologues (mPer1, mPer2 and mPer3) of the Drosophila circadian clock gene period (per) have been identified. The mPer genes share a conserved PAS domain (a dimerization domain found in Per, Arnt and Sim) and show a circadian expression pattern in the suprachiasmatic nucleus. To assess the in vivo function of mPer2, we generated and characterized a deletion mutation in the PAS domain of the mouse mPer2 gene. Here we show that mice homozygous for this mutation display a shorter circadian period followed by a loss of circadian rhythmicity in constant darkness. The mutation also diminishes the oscillating expression of both mPer1 and mPer2 in the suprachiasmatic nucleus, indicating that mPer2 may regulate mPer1 in vivo. These data provide evidence that an mPer gene functions in the circadian clock, and define mPer2 as a component of the mammalian circadian oscillator.  相似文献   

12.
13.
14.
The Gcn5 bromodomain co-ordinates nucleosome remodelling   总被引:7,自引:0,他引:7  
Syntichaki P  Topalidou I  Thireos G 《Nature》2000,404(6776):414-417
  相似文献   

15.
16.
A new role for cryptochrome in a Drosophila circadian oscillator   总被引:4,自引:0,他引:4  
Krishnan B  Levine JD  Lynch MK  Dowse HB  Funes P  Hall JC  Hardin PE  Dryer SE 《Nature》2001,411(6835):313-317
Cryptochromes are flavin/pterin-containing proteins that are involved in circadian clock function in Drosophila and mice. In mice, the cryptochromes Cry1 and Cry2 are integral components of the circadian oscillator within the brain and contribute to circadian photoreception in the retina. In Drosophila, cryptochrome (CRY) acts as a photoreceptor that mediates light input to circadian oscillators in both brain and peripheral tissue. A Drosophila cry mutant, cryb, leaves circadian oscillator function intact in central circadian pacemaker neurons but renders peripheral circadian oscillators largely arrhythmic. Although this arrhythmicity could be caused by a loss of light entrainment, it is also consistent with a role for CRY in the oscillator. A peripheral oscillator drives circadian olfactory responses in Drosophila antennae. Here we show that CRY contributes to oscillator function and physiological output rhythms in the antenna during and after entrainment to light-dark cycles and after photic input is eliminated by entraining flies to temperature cycles. These results demonstrate a photoreceptor-independent role for CRY in the periphery and imply fundamental differences between central and peripheral oscillator mechanisms in Drosophila.  相似文献   

17.
Extensive and divergent circadian gene expression in liver and heart   总被引:55,自引:0,他引:55  
  相似文献   

18.
B Krishnan  S E Dryer  P E Hardin 《Nature》1999,400(6742):375-378
The core mechanism of circadian timekeeping in arthropods and vertebrates consists of feedback loops involving several clock genes, including period (per) and timeless (tim). In the fruitfly Drosophila, circadian oscillations in per expression occur in chemosensory cells of the antennae, even when the antennae are excised and maintained in isolated organ culture. Here we demonstrate a robust circadian rhythm in Drosophila in electrophysiological responses to two classes of olfactory stimuli. These rhythms are observed in wild-type flies during light-dark cycles and in constant darkness, but are abolished in per or tim null-mutant flies (per01 and tim01) which lack rhythms in adult emergence and locomotor behaviour. Olfactory rhythms are also abolished in the per 7.2:2 transgenic line in which per expression is restricted to the lateral neurons of the optic lobe. Because per 7.2:2 flies do not express per in peripheral oscillators, our results provide evidence that peripheral circadian oscillators are necessary for circadian rhythms in olfactory responses. As olfaction is essential for food acquisition, social interactions and predator avoidance in many animals, circadian regulation of olfactory systems could have profound effects on the behaviour of organisms that rely on this sensory modality.  相似文献   

19.
20.
Ko HW  Jiang J  Edery I 《Nature》2002,420(6916):673-678
Protein phosphorylation has a key role in modulating the stabilities of circadian clock proteins in a manner specific to the time of day. A conserved feature of animal clocks is that Period (Per) proteins undergo daily rhythms in phosphorylation and levels, events that are crucial for normal clock progression. Casein kinase Iepsilon (CKIepsilon) has a prominent role in regulating the phosphorylation and abundance of Per proteins in animals. This was first shown in Drosophila with the characterization of Doubletime (Dbt), a homologue of vertebrate casein kinase Iepsilon. However, it is not clear how Dbt regulates the levels of Per. Here we show, using a cell culture system, that Dbt promotes the progressive phosphorylation of Per, leading to the rapid degradation of hyperphosphorylated isoforms by the ubiquitin-proteasome pathway. Slimb, an F-box/WD40-repeat protein functioning in the ubiquitin-proteasome pathway interacts preferentially with phosphorylated Per and stimulates its degradation. Overexpression of slimb or expression in clock cells of a dominant-negative version of slimb disrupts normal rhythmic activity in flies. Our findings suggest that hyperphosphorylated Per is targeted to the proteasome by interactions with Slimb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号