首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
本文研究了带有阻尼项的四阶梁振动方程初边值问题,基于紧致差分方法,给出了数值求解该问题的四种高阶紧致差分格式.对方程中的一阶和二阶时间导数项采用中心差分离散,对四阶空间导数项分别采用五点、七点和带紧致的五点、七点四种方法进行离散,得到四种高阶紧致差分格式,这四种格式均在时间方向达到二阶精度,在空间方向分别达到二阶、四阶...  相似文献   

2.
本文主要研究一维四阶双曲方程初边值问题.首先通过引入一个中间函数将其转化为二阶方程组,然后对方程中的空间导数项采用四阶紧致差分格式离散,时间导数项采用二阶中心差分格式离散,构造出问题的隐式紧致差分格式.数值算例表明该格式具有较好的计算效果.  相似文献   

3.
针对一类四阶非线性抛物方程的初边值问题建立紧致差分格式,利用降阶的思想,通过引入中间变量将原四阶问题转化成二阶非线性方程组.对方程中的时间导数项和空间导数项分别采用Crank-Nicolson格式和四阶紧致差分格式进行离散,对非线性项采用外插的方法进行处理,从而得到原问题的三层线性紧致差分格式,其局部截断误差为■.数值算例表明该格式具有良好的计算效果.基于四阶非线性抛物方程在薄膜理论等问题中的重要作用,对此类方程构造高精度的紧致差分格式,可以使该方程在有关工程计算方面得到更好的应用,因此该研究成果具有重要的理论意义和广泛的应用前景.  相似文献   

4.
【目的】针对一维椭圆型两点边值问题,发展一种六阶混合型高精度紧致差分格式。【方法】主要利用泰勒级数展开和组合紧致差分格式(Combined compact difference,CCD)的思想,将未知函数和它的一阶导数、二阶导数作为未知变量,利用函数和各阶导数之间的固定关系,将原方程对一阶导数泰勒级数展开式中产生的三阶导数项进行替换,同时也利用了一阶导数和二阶导数的六阶组合紧致格式。它的特点是显式紧致差分格式和隐式紧致差分格式混合在一起。【结果】最终使得混合型紧致差分格式整体达到了六阶精度。此外,提出的格式还具有推导简便,易实现编程,且能直接推广到高维问题的优点。尽管格式是六阶精度,但与四阶精度格式一样,空间方向仅仅需要3个网格点,因此由格式生成的方程组可采用追赶法进行高效求解。【结论】最后通过对具有精确解的4个算例进行数值实验,数值结果验证了该格式的精确性和可靠性。  相似文献   

5.
首先针对一维扩散方程,空间方向采用二阶导数的四阶紧致差分公式进行离散,时间方向采用泰勒级数展开的方法进行离散,推导出了一种高精度显式紧致差分格式;然后通过Fourier分析方法给出了格式的稳定性条件为λ≤1/2(λ为网格比);最后通过数值实验验证了格式的精确性和可靠性.  相似文献   

6.
针对单个的Black-Scholes方程,提出一种紧致差分格式.首先,利用指数变换消去方程中的空间一阶导数;接着,在时间方向上采用CN格式,空间二阶导数采用四阶Padé逼近,构造精度为O(Δt~2+h~4)的紧致差分格式;然后,利用一种较为不同的离散能量法分析差分格式的稳定性和收敛性;最后,通过数值算例验证理论分析的有效性.  相似文献   

7.
扩散方程通常用来描述扩散现象中的物质密度的变化或者与扩散相类似的现象,针对二维扩散方程提出了一种高精度紧致差分格式,该格式基于四次样条函数对空间变量进行离散,对时间导数采用(2,2)Padé逼近,从而得到了时间和空间均为四阶精度的紧致差分格式.然后证明了该格式是无条件稳定的.最后通过数值实验,验证方法的精确性和稳定性.  相似文献   

8.
求解波动方程的高精度紧致隐式差分方法   总被引:1,自引:0,他引:1  
基于二阶微商的二阶中心差商和四阶紧致差商逼近公式及其加权平均思想,推导出了数值求解一维波动方程的2种精度分别为O(x^2+h^4)和O(x^4+h^4)的三层隐式紧致差分格式,以夏与之相匹配的第一个时间步的同阶离散格式,并采用Fourier方法分析了格式的稳定性.由于每一时间层上最多只用到了3个网格点,所以可采用追赶法直接求解差分方程.数值实验结果验证了所得方法的精确性和可靠性.  相似文献   

9.
针对一类非线性偏微分方程,提出了一种新的高精度紧致差分方法.首先对内部网格节点处的空间一阶和二阶导数项采用四阶精度的Padé 紧致差分格式进行离散,然后对时间导数项采用泰勒级数展开并使用截断误差余项修正法进行离散,最终得到了求解该非线性方程的一种三层隐式高精度紧致差分格式,其截断误差为O(τ2+τh 2+h 4),即当...  相似文献   

10.
基于二阶导数的四阶Padé型紧致差分逼近式,并结合原方程本身,得到了二维Helm-holtz一种四阶精度的紧致差分格式.该格式在每个空间方向上只涉及到三个点处的未知量及其二阶导数值,边界处对于二阶导数利用四阶显式偏心格式.然后,利用Richardson外推法、算子插值法及二阶导数在边界点处的六阶显式偏心格式,将本文构造的二维Helmholtz方程四阶紧致差分格式的精度提高到六阶.最后,通过数值实验验证了本文方法的精确性和可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号