首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Prentki  C B Wollheim 《Experientia》1984,40(10):1052-1060
The role of Ca2+ in secretagogue-induced insulin release is documented not only by the measurements of 45Ca fluxes in pancreatic islets, but also, by direct monitoring of cytosolic free Ca2+, [Ca2+]i. As demonstrated, using the fluorescent indicator quin 2, glyceraldehyde, carbamylcholine and alanine raise [Ca2+]i in the insulin secreting cell line RINm5F, whereas glucose has a similar effect in pancreatic islet cells. The regulation of cellular Ca2+ homeostasis by organelles from a rat insulinoma, was investigated with a Ca2+ selective electrode. The results suggest that both the endoplasmic reticulum and the mitochondria participate in this regulation, albeit at different Ca2+ concentrations. By contrast, the secretory granules do not appear to be involved in the short-term regulation of [Ca2+]i. Evidence is presented that inositol 1,4,5-trisphosphate, which is shown to mobilize Ca2+ from the endoplasmic reticulum, is acting as an intracellular mediator in the stimulation of insulin release.  相似文献   

2.
C J Duncan 《Experientia》1978,34(12):1531-1535
It is suggested that various muscle diseases and examples of experimentally-induced muscle damage arise because of a high calcium level in the myoplasm. When [Ca2+]i is raised experimentally in amphibian or mammaliam muscle by treatment with A23187 or caffeine, myofilament degradation follows quickly. Such a rapid action suggests the involvement of a sequence of proteolytic activity that is stimulated by a rise in [Ca2+]i. Ca2+ might either trigger protease activity directly or indirectly, or promote the release of lysosomal enzymes. A high [Ca2+]i in dystrophic muscle is believed to be the resultant of a sequence of events that is summarized in the figure. Suggestions are presented for different ways in which the steady-state position of [Ca2+]i might ultimately be controlled for the clinical amelioration of some dystrophic conditions.  相似文献   

3.
Cytosolic calcium in platelet activation   总被引:4,自引:0,他引:4  
T J Rink 《Experientia》1988,44(2):97-100
Experiments with permeabilised platelets, and with intact platelets loaded with fluorescent Ca2+-indicators, over the past several years have greatly extended our knowledge and understanding of cytosolic Ca2+ as a platelet activator and its interactions with other cytosolic regulators. This article outlines insights, gained from the use of the fluorescent dyes, into maintenance and restoration of basal [Ca2+]i, mechanisms of receptor-mediated Ca2+-mobilisation and quantitation of [Ca2+]i/response relations in intact human platelets.  相似文献   

4.
C J Duncan 《Experientia》1990,46(1):41-48
The O2- and Ca2(+)-paradoxes have a number of features in common and it is suggested that release of cytosolic proteins in both paradoxes is initiated by the activation of a sarcolemma NAD(P)H dehydrogenase which can generate a transmembrane flow of H+ and e- and also oxygen radicals or redox cycling which damage ion channels and membrane proteins (phase I). Entry of Ca2+ through the damaged ion channels then exacerbates the damage by further activating this system, either directly or indirectly, and the redox cycling and/or oxygen radicals cause further damage to integral and cytoskeletal proteins of the sarcolemma resulting in microdamage to the integrity of the membrane (phase II) and the consequent release or exocytosis of cytoplasmic proteins and, under specialised conditions, the blebbing of the sarcolemma. The system may be primed either by removal of extracellular Ca2+ or by raising [Ca2+]i by a variety of measures, these two actions being synergistic. The system is initially activated in the Ca2(+)-paradox by the membrane perturbation associated with removal of extracellular Ca2+; prolonged anoxia in the metabolically active cardiac muscle causes a depletion of the ATP supply, particularly in the absence of glucose, and hence a rise in [Ca2+]i in phase I of the oxygen paradox with the consequent activation of the NAD(P)H oxidase at the sarcolemma. Oxygen radicals are probably generated in both paradoxes and may have a partial role in the genesis of damage, but are not essential in the Ca2(+)-paradox which continues under anoxia. Massive entry of Ca2+ also activates an intracellularly localised dehydrogenase (probably at the SR) which produces myofilament damage by redox cycling.  相似文献   

5.
Cannabinoid CB1 receptors and vanilloid VR1 receptors are co-localized to some extent in sensory neurons of the spinal cord and dorsal root ganglia. In this study, we over-expressed both receptor types in human embryonic kidney (HEK)-293 cells and investigated the effect of the CB1 agonist HU-210 on the VR1-mediated increase in intracellular Ca2+ ([Ca2+]i), a well-known response of the prototypical VR1 agonist capsaicin. After a 5-min pre-treatment, HU-210 (0.1 microM) significantly enhanced the effect of several concentrations of capsaicin on [Ca2+]i in HEK-293 cells over-expressing both rat CB1 and human VR1 (CB1-VR1-HEK cells), but not in cells over-expressing only human VR1 (VR1-HEK cells). This effect was blocked by the CB1 receptor antagonist SR141716A (0.5 microM), and by phosphoinositide-3-kinase and phospholipase C inhibitors. The endogenous agonist of CB1 and VR1 receptors, anandamide, was more efficacious in inducing a VR1-mediated stimulation of [Ca2+]i in CB1-VR1-HEK cells than in VR1-HEK cells, and part of its effect on the former cells was blocked by SR141716A (0.5 microM). Pre-treatment of CB1-VR1-HEK cells with forskolin, an adenylate cyclase activator, enhanced the capsaicin effect on [Ca2+]i. HU-210, which in the same cells inhibits forskolin-induced enhancement of cAMP levels, blocked the stimulatory effect of forskolin on capsaicin. Our data suggest that in cells co-expressing both CB1 and VR1 receptors, pre-treatment with CB1 agonists inhibits or stimulates VR1 gating by capsaicin depending on whether or not cAMP-mediated signalling has been concomitantly activated.  相似文献   

6.
W Knepel  C Sch?fl  G Wesemeyer  D M G?tz 《Experientia》1988,44(11-12):1003-1005
The effect of dynorphin A-(1-13) (Dyn A-(1-13] and other opioids on the cytosolic free calcium concentration [(Ca2+]i) in rat anterior pituitary cells was examined using the fluorescent indicator fura-2. A commercial synthetic Dyn A-(1-13) preparation elevated [Ca2+]i. Results, which were obtained with receptor antagonists, and in LHRH receptor radioligand binding studies as well as by HPLC combined with LHRH radioimmunoassay, strongly suggest that this effect of the dynorphin preparation was due to contamination with a LHRH-like compound. Dyn A-(1-13), purified by HPLC, as well as Dyn A-(2-13), [Leu5]enkephalin, beta-endorphin, morphine, or U50,488H had no effect on [Ca2+]i. LHRH caused a rapid increase in [Ca2+]i by about 50 nM which was blocked by the LHRH antagonist, [D-pGlu1,D-Phe2,D-Trp3,6] LHRH.  相似文献   

7.
M F Rudge  C J Duncan 《Experientia》1980,36(8):992-993
Experimentally-induced rises in intracellular calcium ([Ca2+]i) promote rapid myofilament degradation in amphibian and mammalian cardiac muscle strips. The relevance of these studies to the subcellular injury produced by ischaemia, the possible involvement of lysosomal enzymes and similarities with skeletal muscle are discussed.  相似文献   

8.
Chronic exposure of pancreatic islets to elevated levels of palmitate leads to beta-cell dysfunction. We examined possible involvement of mitogenactivated protein kinases (MAPKs) and caspase-3 in palmitate-induced beta-cell dysfunction and tested the influence of the anti-diabetic drug rosiglitazone (ROZ). Palmitate amplified glucose-stimulated augmentation of intracellular free calcium ([Ca2+]i) and insulin secretion in incubated islets. ROZ suppressed this amplification, whereas it modestly augmented glucose-induced increase in these events. ROZ suppressed short-term palmitate-induced phosphorylation of pro-apoptotic MAPKs, i.e., SAPK/JNK and p38. Long-term islet culturing with palmitate induced inducible nitric oxide synthase (iNOS) and activated SAPK/JNK-p38. ROZ counteracted these effects. Both palmitate and cytokines activated caspase-3 in MIN6c4-cells and isolated islets. ROZ suppressed palmitate- but not cytokine-induced caspase-3 activation. Finally, after palmitate culturing, ROZ reversed the inhibitory effect on glucose-stimulated insulin release. We suggest that ROZ counteracts palmitateinduced deleterious effects on beta-cell function via suppression of iNOS, pro-apoptotic MAPKs and caspase-3 activities, as evidenced by restoration of glucose-stimulated insulin release.  相似文献   

9.
C R Gandhi  D H Ross 《Experientia》1989,45(5):407-413
Studies have implicated Ca++ in the actions of ethanol at many biochemical levels. Calcium as a major intracellular messenger in the central nervous system is involved in many processes, including protein phosphorylation enzyme activation and secretion of hormones and neurotransmitters. The control of intracellular calcium, therefore, represents a major step by which neuronal cells regulate their activities. The present review focuses on three primary areas which influence intracellular calcium levels; voltage-dependent Ca++ channels, receptor-mediated inositol phospholipid hydrolysis, and Ca++/Mg++-ATPase, the high affinity membrane Ca++ pump. Current research suggests that a subtype of the voltage-dependent Ca++ channel, the dihydropyridine-sensitive Ca++ channel, is uniquely sensitive to acute and chronic ethanol treatment. Acute exposure inhibits, while chronic ethanol exposure increases 45Ca++-influx and [3H]dihydropyridine receptor binding sites. In addition, acute and chronic exposure to ethanol inhibits, then increases Ca++/Mg++-ATPase activity in neuronal membranes. Changes in Ca++ channel and Ca++/Mg++-ATPase activity following chronic ethanol may occur as an adaptation process to increase Ca++ availability for intracellular processes. Since receptor-dependent inositol phospholipid hydrolysis is enhanced after chronic ethanol treatment, subsequent activation of protein kinase-C may also be involved in the adaptation process and may indicate increased coupling for receptor-dependent changes in Ca++/Mg++-ATPase activity. The increased sensitivity of three Ca++-dependent processes suggest that adaptation to chronic ethanol exposure may involve coupling of one or more of these processes to receptor-mediated events.  相似文献   

10.
Release of endogenous somatostatin (SRIF) from the rat cerebral cortical slices incubated in Krebs-bicarbonate buffer was increased from the basal rate of 3.4 +/- 0.6% of the total SRIF content in 15 min at [K+]o = 5.6 mM, to 13.1 +/- 1.6% upon raising the [K+]o to 56.6 mM. The high-K+ evoked SRIF release was absent when Ca++ in the medium was replaced by Mn++. The isolated synaptosomes from rat cerebral cortex contain 13.2 +/- 3.1 ng SRIF/mg protein compared to 0.33 +/- 0.01 ng/mg protein in the cortical tissue as a whole, suggesting that nerve terminals are the main source of the peptide released upon membrane depolarization.  相似文献   

11.
K E Kamm  R A Murphy 《Experientia》1985,41(8):1010-1017
Transients in myoplasmic [Ca2+] and in phosphorylation of the 20,000 dalton light chain of myosin have been reported following stimulation of vascular smooth muscle by various agonists. Since these transients are rapid compared with the time required to attain a steady-state stress, agonist diffusion rates may be a significant limitation in activation. The purpose of this study was to estimate the effect of agonist diffusion rates on the time course of activation as assessed by mechanical measurements of stress development and isotonic shortening velocities and by determinations of the time course of myosin phosphorylation. The approach was to measure these parameters in K+ -stimulated preparations of the swine carotid media of varying thicknesses and to estimate the theoretical contributions imposed by diffusion rates and the presence of a diffusion boundary layer surrounding the tissue. The results show that the time course of parameters which are tissue averages such as stiffness, active stress, and myosin phosphorylation is dominated by agonist diffusion rates. The sequence of events involved in excitation-contraction coupling including agonist actions on the cell membrane, Ca2+ release, activation of myosin light chain kinase, and cross-bridge phosphorylation appear to be very rapid events compared with stress development. Estimates of unloaded or lightly loaded shortening velocities which are not simple tissue averages appear to provide an improved estimate of activation rates.  相似文献   

12.
P Thams 《Experientia》1991,47(11-12):1201-1208
The role of protein kinase C and Ca2+ in glucose-induced sensitization/desensitization of insulin secretion was studied. A 22-24 h exposure of mouse pancreatic islets to glucose (16.7 mmol/l) in TCM 199 culture medium, with 0.26 mmol/l or 1.26 mmol/l Ca2+, reduced total islet protein kinase C activity to approx. 85% and 60% of control values, respectively. At 0.26 mmol/l Ca2+ in TCM 199 medium, exposure to glucose (16.7 mmol/l) led to a potentiation of both phase 1 and phase 2 of glucose-induced insulin secretion, and caused a shift in the dose-response curve with 10 mmol/l and 16.7 mmol/l glucose exhibiting equipotent effects in stimulation of insulin secretion. In glucose-sensitized islets, the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (0.16 mumol/l) did not further potentiate induction of secretion by 10 mmol/l or 16.7 mmol/l glucose. At 3.3 mmol/l glucose, however, phorbol ester-induced secretion was augmented, and was characterized by a faster onset of secretion in glucose-sensitized islets relative to control islets. In contrast, a partial reduction in arachidonic acid (100 mumol/l)-induced insulin release was observed in glucose-sensitized islets in the absence of extracellular Ca2+. Increasing the Ca2+ concentration to 1.26 mmol/l in TCM 199 during the 22-24 h exposure to glucose (16.7 mmol/l) led to inhibition of phase 1 and abolition of phase 2 of glucose (10 mmol/l, 16.7 mmol/l)-induced insulin secretion. In addition, this treatment abolished phorbol ester-induced and arachidonic acid-induced insulin secretion at 3.3 mmol/l glucose. Altogether, these data suggest that sensitization of insulin secretion is caused by a preferential down-regulation of the inhibitory effects of protein kinase C, leading to an increased first phase, and an increased coupling of glucose to the stimulatory effects of protein kinase C during the second phase of glucose-induced insulin secretion. Desensitization of insulin secretion appears to be a consequence of sustained Ca2+ influx, inducing extensive down-regulation of protein kinase C and also causing deleterious effects on islet cell function in protein kinase C-deprived islets.  相似文献   

13.
14.
R Weingart  P Maurer 《Experientia》1987,43(10):1091-1094
Cell pairs isolated from adult rat and guinea pig ventricles were used to study the electrical properties of the nexal membrane. Each cell of a pair was connected to a voltage-clamp system so as to enable whole-cell, tight-seal recording. The current-voltage relationship of the nexal membrane was found to be linear, revealing a resistance rn of 2-4 M omega. rn was insensitive to the sarcolemmal membrane potential (range: -90 to +30 mV), and exerted no time-dependent gating behavior (range: 0.1 to 10 s). Lowering pHi yielded a small increase in rn. Vigorous elevations in [Ca2+]i gave rise to an increase in rn which was associated with a cell shortening. Uncoupling caused by aliphatic alcohols or halothane did not produce cell shortening. Cell pairs were also used to study action potential transfer.  相似文献   

15.
The active role of astrocytes in synaptic transmission   总被引:7,自引:0,他引:7  
In the central nervous system, astrocytes form an intimately connected network with neurons, and their processes closely enwrap synapses. The critical role of these cells in metabolic and trophic support to neurons, ion buffering and clearance of neurotransmitters is well established. However, recent accumulating evidence suggests that astrocytes are active partners of neurons in additional and more complex functions. In particular, astrocytes express a repertoire of neurotransmitter receptors mirroring that of neighbouring synapses. Such receptors are stimulated during synaptic activity and start calcium signalling into the astrocyte network. Intracellular oscillations and intercellular calcium waves represent the astrocyte's own form of excitability, as they trigger release of transmitter (i.e. glutamate) via a novel process sensitive to blockers of exocytosis and involving cyclooxygenase eicosanoids. Astrocyte-released glutamate activates receptors on the surrounding neurons and modifies their electrical and intracellular calcium ([Ca2+]i) state. These exciting new findings reveal an active participation of astrocytes in synaptic transmission and the involvement of neuronastrocyte circuits in the processing of information in the brain.  相似文献   

16.
17.
Effects of pCai and pHi on cell-to-cell coupling   总被引:1,自引:0,他引:1  
M L Pressler 《Experientia》1987,43(10):1084-1091
Internal longitudinal resistance (ri), a determinant of cardiac conduction, is affected by changes in intracellular calcium and protons. However, the role and mechanism by which H+ and Ca2+ may modulate ri is uncertain. Cable analysis was performed in cardiac Purkinje fibers to measure ri during various interventions. In some experiments, intracellular pH (pHi) was recorded simultaneously to study the pHi-ri relation. Both intracellular Ca2+ and H+ independently modified ri. However, internal resistance of cardiac fibers was insensitive to pHi changes compared to other tissues. A latent period preceded the pHi-related changes in ri and the amount of change depended upon methodology. The results suggest that direct action of protons or ri may be subordinate to other regulatory processes. Ionic regulation of internal longitudinal resistance may occur by more than one mechanism: i) direct cationic binding to sites on junctional membrane proteins; and ii) H+- or Ca2+-dependent phosphorylation of junctional proteins.  相似文献   

18.
Summary The actions on amphibian embryos of UV-irradiation, exposure to Li+ or exposure to ouabain show interesting parallels with their effects on spontaneous release at the presynaptic terminals of the neuromuscular junction. It is suggested that these treatments serve to raise intracellular Ca2+ ([Ca2+ i) in these examples, and that UV-promoted abnormalities in embryogenesis are a consequence of changes in [Ca2+]i at critical stages in development.  相似文献   

19.
T Matsuura 《Experientia》1984,40(8):817-819
Investigation of Ba2+ effects on fast and slow PIII responses in isolated bullfrog retina revealed that Ba2+ suppressed slow PIII completely with little effect on fast PIII. A light-induced [K+]0 decrease in the photoreceptor layer was observed in spite of Ba2+ perfusion, indicating the suppressive action of Ba2+ on the K+ conductance of the Müller cell membrane.  相似文献   

20.
The isolation of ionic fluxes contributing to electric currents through cell membranes often requires block of other undesired components which can be achieved, among others, by divalent cations. Mn2+ and Ba2+ are often used, for example, to block Ca and K currents. Here we have investigated the effects of these two cations on the properties of the hyperpolarization-activated pacemaker current if, in rabbit sino-atrial node myocytes, as obtained by voltage clamp analysis. We find that 2 mM Mn2+ shifts the if activation curve by 3.2 +/- 0.3 mV towards more positive values. However, when 1 mM Ba2+ is also added, the positive shift is more than halved (1.3 +/- 0.2 mV). We find, too, that in the absence of blocking cations the ACh-induced if inhibition is slightly higher than in their presence. These results indicate that the alteration of if kinetic properties by Ba2+ plus Mn(2+)-containing solutions is minimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号