首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Phosphoinositides play a central role in the control of major eukaryotic cell signaling mechanisms. Accordingly, the list of phosphoinositide-metabolizing enzymes implicated in human diseases has considerably increased these last years. Here we will focus on myotubularin, the protein mutated in the X-linked myotubular myopathy (XLMTM) and the founding member of a family of 13 related proteins. Recent data demonstrate that myotubularin and several other members of the family are potent lipid phosphatases showing a marked specificity for phosphatidylinositol 3-phosphate [PtdIns(3)P]. This finding has raised considerable interest as PtdIns(3)P is implicated in vesicular trafficking and sorting through its binding to specific protein domains. The structure of myotubularin, the molecular mechanisms of its function and its implication in the etiology of XLMTM will be discussed, as well as the potential function and role of the other members of the family.Received 14 February 2003; received after revision 10 April 2003; accepted 14 April 2003  相似文献   

5.
6.
The pathogenesis of any given human disease is a complex multifactorial process characterized by many biologically significant and interdependent alterations. One of these changes, specific to a wide range of human pathologies, is DNA hypomethylation. DNA hypomethylation signifies one of the major DNA methylation states that refers to a relative decrease from the “normal” methylation level. It is clear that disease by itself can induce hypomethylation of DNA; however, a decrease in DNA methylation can also have an impact on the predisposition to pathological states and disease development. This review presents evidence suggesting the involvement of DNA hypomethylation in the pathogenesis of several major human pathologies, including cancer, atherosclerosis, Alzheimer’s disease, and psychiatric disorders. The views expressed in this paper do not necessarily represent those of the US Food and Drug Administration.  相似文献   

7.
The steroid hormone estrogen and signaling from its receptors are increasingly recognized as critical mediators of a variety of organ-specific biological processes. Recent advances in the identification and functional characterization of novel estrogen receptor interacting proteins clearly show the complexity of hormonal signaling regulation, but may also contribute to our understanding of the roles of estrogen signaling in normal physiology and the pathobiology of human disease.Received 12 June 2003; received after revision 21 July 2003; accepted 29 July 2003  相似文献   

8.
9.
10.
Zusammenfassung Langzeitversuche mit hypophysektomierten Ratten ergaben, dass Testosteron oder HCG allein die Spermiogenese, Hodengewicht, nicht aufrechterhalten konnten.

Klinische Forschung der Schering AG.  相似文献   

11.
A number of human diseases have been shown to be associated with mutation in the genes encoding leucine-rich-repeat (LRR)-containing proteins. They include 16 different LRR proteins. Mutations of these proteins are associated with 19 human diseases. The mutations occur frequently within the LRR domains as well as their neighboring domains, including cysteine clusters. Here, based on the sequence analysis of the LRR domains and the known structure of LRR proteins, we describe some features of different sequence variants and discuss their adverse effects. The mutations in the cysteine clusters, which preclude the formation of sulfide bridges or lead to a wrong paring of cysteines in extracellular proteins or extracellular domains, occur with high frequency. In contrast, missense mutations at some specific positions in LRRs are very rare or are not observed at all. Received 4 May 2005; received after revision 18 August 2005; accepted 1 September 2005  相似文献   

12.
Molecular mimicry: a critical look at exemplary instances in human diseases   总被引:7,自引:0,他引:7  
Molecular mimicry, the concept that antigenic determinants of microorganisms resemble antigenic determinants of the host, is frequently cited as a plausible mechanism to account for the association of infection and autoimmune disease. Based on analogous sequences of amino acids or on cross-reactions of monoclonal antibodies, numerous examples of such mimicry have been reported. There are, however, no clear examples of a human disease caused by molecular mimicry.  相似文献   

13.
DNA replication is essential for accurate transmission of genomic information from parental to daughter cells. DNA replication is licensed once per cell division cycle. This process is highly regulated by both positive and negative regulators. Over-replication, under-replication, as well as DNA damage in a cell all induce the activation of checkpoint control pathways such as ATM/ATR, CHK kinases, and the tumor suppressor protein p53, which provide “damage controls” via either DNA repairs or apoptosis. This review focuses on accumulating evidence, with the emphasis on recently discovered Killin, that S-phase checkpoint control is crucial for a mammalian cell to make a life and death decision in order to safeguard genome integrity.  相似文献   

14.
Zinc transporters, the Zrt-, Irt-like protein (ZIP) family and the Zn transporter (ZnT) family transporters, are found in all aspects of life. Increasing evidence has clarified the molecular mechanism, in which both transporters play critical roles in cellular and physiological functions via mobilizing zinc across the cellular membrane. In the last decade, mutations in ZIP and ZnT transporter genes have been shown to be implicated in a number of inherited human diseases. Moreover, dysregulation of expression and activity of both transporters has been suggested to be involved in the pathogenesis and progression of chronic diseases including cancer, immunological impairment, and neurodegenerative diseases, although comprehensive understanding is far from complete. The diverse phenotypes of diseases related to ZIP and ZnT transporters reflect the multifarious biological functions of both transporters. The present review summarizes the current understanding of ZIP and ZnT transporter functions from the standpoint of human health and diseases. The study of zinc transporters is currently of great clinical interest.  相似文献   

15.
16.
Zusammenfassung Mutagenitätsuntersuchungen von Rifampicin anDrosophila melanogas (X-chromosomale rezessive Letalmutationen) und an menschlichen Leukozytenchromosomen in vitro ergaben keine Anhaltspunkte für eine genetische Wirksamkeit dieser Substanz.

We thank Mrs.R. Pieper for her carful technical assistance. We are also grateful to ProfessorR. Hess and Dr.J. Gelzer (Ciba-Geigy, Basel) for the supply of rifampicin.  相似文献   

17.
The primary cilium is a non-motile and microtubule-enriched protrusion ensheathed by plasma membrane. Primary cilia function as mechano/chemosensors and signaling hubs and their disorders predispose to a wide spectrum of human diseases. Most types of cells assemble their primary cilia in response to cellular quiescence, whereas they start to retract the primary cilia upon cell-cycle reentry. The retardation of ciliary resorption process has been shown to delay cell-cycle progression to the S or M phase after cell-cycle reentry. Apart from this conventional concept of ciliary disassembly linked to cell-cycle reentry, recent studies have led to a novel concept, suggesting that cells can suppress primary cilia assembly during cell proliferation. Accumulating evidence has also demonstrated the importance of Aurora-A (a protein originally identified as one of mitotic kinases) not only in ciliary resorption after cell-cycle reentry but also in the suppression of ciliogenesis in proliferating cells, whereas Aurora-A activators are clearly distinct in both phenomena. Here, we summarize the current knowledge of how cycling cells suppress ciliogenesis and compare it with mechanisms underlying ciliary resorption after cell-cycle reentry. We also discuss a reciprocal relationship between primary cilia and cell proliferation.  相似文献   

18.
Summary The acute administration of morphine, alcohol or dopamine results in a pronounced suppression of the convulsions produced by alcohol in mice. The suppressive action of morphine on alcohol withdrawal in the mouse apparently is not a product of morphine intoxication, but rather to some other specific interaction between alcohol and morphine in the central nervous system. The conclusion suggest that dopamine may play a significant role as a modulator in convulsions produced during alcohol withdrawal.Dr.Kenneth Blum is Associate Professor in Pharmacology at The University of Texas Health Science Center at San Antonio and a Career Teacher in Drug Abuse and Alcoholism under a grant number 1-TO1-DA00290-01 from the National Institute on Drug Abuse.Acknowledgments. Our thanks are due toB. Wiggins, R. Marin andS. Elston for their excellent technical assistance. Research funded in part by Air Force Grant No. AFOSR-71-2075.  相似文献   

19.
Summary A single injection of 2.0 mg/kg dexamethasone (DXM) administered at 51 h after pregnant mare serum gonadatropin (PMS) treatment inhibited both ovulation and luteinization. S.c. injection of human chorionic gonadotropin (HGG) caused ovulation ond luteinization in DXM-PMS-treated rats, whereas treatment with ACTH failed to overcome the DXM inhibitory effect. These findings are interpreted to indicate that DXM inhibits ovulation through a mechanism which might involve the central nervous system.  相似文献   

20.
Gap junction channels link cytoplasms of adjacent cells. Connexins, their constitutive proteins, are essential in cell homeostasis and are implicated in numerous physiological processes. Spermatogenesis is a sophisticated model of germ cell proliferation, differentiation, survival, and apoptosis, in which a connexin isotype, connexin 43, plays a crucial role as evidenced by genomic approaches based on gene deletion. The balance between cell proliferation/differentiation/apoptosis is a prerequisite for maintaining levels of spermatozoa essential for fertility and for limiting anarchic cell proliferation, a major risk of testis tumor. The present review highlights the emerging role of connexins in testis pathogenesis, focusing specifically on two intimately interconnected human testicular diseases (azoospermia with impaired spermatogenesis and testicular germ cell tumors), whose incidence increased during the last decades. This work proposes connexin 43 as a potential cancer diagnostic and prognostic marker, as well as a promising therapeutic target for testicular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号