首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于残差思想的异常数据检测方法的关键之处在于对数据的准确预测.针对这一问题,提出基于改进径向基网络(radial basis function network,RBFN)的过程工业时间序列预测方法,该方法通过改变RBF网络的输入形式,使改进后的RBF网络能够更方便地引入遗忘因子以及惩罚因子,以适应于基于残差思想的异常数据检测方法要求的动态性能和鲁棒性.通过理论证明改进的RBF网络与传统RBF网络的等效性,并通过实验比较证明改进后的RBF网络较传统的网络结构更简单,参数意义更明确.  相似文献   

2.
RBF网络是一种新颖有效的前向型神经网络,它通过非线性基函数的线性组合实现从输入空间RN到输出空间RM的非线性转换,特别适合于非线性时间序列如股票市场等金融系统的预测.本文以中集集团的实际收盘价作为预测对象,提出基于RBF网络的个股价格预测模型,仿真实验表明,该模型对于个股价格的短期预测是可行有效的.  相似文献   

3.
应用Elman神经网络的混沌时间序列预测   总被引:5,自引:0,他引:5  
利用改进的 Elman神经网络对 3个典型的混沌时间序列在不同的噪声水平下进行预测 ,探讨了神经网络学习与泛化之间的关系 ,通过试凑法给出了 Elman最优的隐节点个数。并利用3种指标对预测结果进行了评估 ,结果显示 Elman网络对混沌时间序列预测的良好特性  相似文献   

4.
根据径向基函数(RBF)网络的理论以及图书馆流通量影响因素,提出了基于RBF网络预测图书馆流通量的模型,利用图书借阅的原始统计数据对该模型进行了计算,指出该算法用于预测图书馆流通量是可行和有效的,具有一定的应用参考价值。  相似文献   

5.
基于RBF神经网络的时间序列预测   总被引:3,自引:0,他引:3  
分析了RBF神经网络的结构和学习算法,利用RBF神经网络和Matlab神经网络工具箱建立人口数量预测模型,并应用该模型对中国人口数量进行了预测.  相似文献   

6.
基于径向基函数网络的混沌时间序列分析   总被引:9,自引:0,他引:9  
给出了基于径向基函数网络的混沌时间序列预测的方法。利用非线性自回归移动平均(NARMAX)模型对非线性时间序列进行辨识并给出基于动态径向基函数(RBF)网络的辨识算法。将这一方法应用到Henon映射的混沌时间序列的嵌入维估计及我国股票市场的混沌现象的实证研究,得到理想的结果。文章最后指出了进一步的研究方向。  相似文献   

7.
基于改进典型相关分析的混沌时间序列预测   总被引:1,自引:0,他引:1  
典型相关分析是目前常用的研究两个变量集间相关性的统计方法.针对线性典型相关分析法不能揭示变量间非线性关系,因而不适用于混沌系统等问题,将核典型相关分析与径向基函数神经网络相结合,提出了一种改进的核典型相关分析方法以解决映射空间样本未知及逆矩阵求解困难等问题.首先利用两个径向基函数神经网络,通过训练使两个网络输出之间的相关系数达到最大,可同时得到两组典型相关变量.然后建立预测模型,对Lorenz混沌方程及大连月气温与降雨二变量混沌时间序列进行仿真,并与传统的线性回归预测方法进行比较,多组仿真结果证明了所述方法的有效性.  相似文献   

8.
根据径向基函数(RBF)网络的理论以及图书馆流通量影响因素,提出了基于RBF网络预测图书馆流通量的模型,利用图书借阅的原始统计数据对该模型进行了计算,指出该算法用于预测图书馆流通量是可行和有效的,具有一定的应用参考价值.  相似文献   

9.
根据时间序列近期数据较远期数据包含有更多未来信息的思想,对最小二乘支持向量机预测方法进行了扩展,得到了更具一般性的最小二乘支持向量机预测模型,给出了扩展后的预测模型具体算法。两个时间序列的预测实例表明,扩展后的预测方法获得了更好的预测效果,提升了最小二乘支持向量机预测方法的价值。  相似文献   

10.
基于遗传算法的RBF神经网络非线性时间序列预测   总被引:1,自引:0,他引:1  
提出一种基于遗传算法和RBF神经网络相结合的时间序列预测模型,克服了单个神经网络在非线性时间序列预测中容易陷入局部极小值及网络训练速度缓慢的问题.以居民消费价格指数数据进行训练和测试,与传统的BP神经网络预测模型相比较,该模型的预测精度是令人满意的,数值模拟证明了该方法的有效性和可行性.  相似文献   

11.
风电时间序列预测模型的优劣直接影响风功率的应用价值,最小二乘支持向量机(least squares support vector machine,LSSVM)在处理风电预测问题上具有明显优势。提出了一种双参数算法(two-parameter algorithm,TPA),从理论上证明了任意初始值均可线性收敛到全局最优值。调用TPA算法对LSSVM模型的惩罚因子和径向基宽度进行寻优赋值,并将训练好的TPA-LSSVM模型应用于风电预测中。仿真结果表明,与LSSVM模型、粒子群最小二乘支持向量机(PSO-LSSVM)模型、径向基函数神经网络(RBFNN)模型相比,TPA算法可以更好地实现LSSVM的参数寻优,TPA-LSSVM模型能有效提高预测精度。  相似文献   

12.
混沌时间序列的最小二乘支持向量机预测   总被引:4,自引:0,他引:4  
提出了最小二乘支持向量机混沌时间序列预测方法,并研究了三种混沌信号的预测性能。该方法在优化指标中采用了平方项,且只有等式约束,将传统支持向量机求解二次规划问题转化为求解线性方程组,因而简化了计算复杂性。仿真实验结果表明该方法预测模型参数选择容易、在较大范围内取值时对预测误差影响很小,而且即使在输入维数m小于Takens嵌入定理所确定的维数时,也具有很好的预测性能。  相似文献   

13.
提出一种基于嵌入理论和确定集上的预测误差的混沌时间序列预测方法.该方法不仅克服了仅用延迟嵌入技术的弊端,而且也降低了直接使用预测误差决定模型状态向量的盲目性.实证分析结果表明该方法在实际预测中是有效的.  相似文献   

14.
针对复杂时间序列全局预测模型建模效率低、预测性能不佳等问题,提出一种基于局部RBF神经网络的新型预测模型.该模型采用K最近邻搜索方法得到待预测样本的K个近邻,用近邻样本进行RBF神经网络建模,用训练好的RBF神经网络对待预测样本进行预测.实验结果显示该模型在复杂时间序列预测上有良好的性能.  相似文献   

15.
利用最小二乘回归支持向量机LS-SVMR(least square support vectors machines for regression)对2个不同长度的时间序列资料,国家气候中心1982年1月~2005年12月Nino3区逐月海温距平指数(短序列),及1950年1月~2006年12月Nino3区逐月海温距平指数(长序列)资料进行了预测试验,以验证支持向量机对气候变化中非线性时间序列的预测效果.结果表明:通过训练建立的最小二乘回归支持向量机模型,较好地反映了Nino3区海温距平指数的变化规律,36个月的预报效果较好,具有一定的可信度.资料的长度越长,预测结果与实测值的变化趋势越接近,但资料长度对均方根预报误差不敏感.  相似文献   

16.
In the present paper, we propose an approach of combination prediction of chaotic time series. The method is based on the adding-weight one-rank local-region method of chaotic time series. The method allows us to define an interval containing a future value with a given probability, which is obtained by studying the prediction error distribution. Its effectiveness is shown with data generated by Logistic map.  相似文献   

17.
ANN非线性时间序列预测模型输入延时τ的确定   总被引:1,自引:0,他引:1  
用神经网络(ANN)建立非线性时间序列预测模型时,ANN输入数据延时间隔τ的选取是必须考虑的一个方面。目前关于延时间隔τ选取的流行做法是:将τ确定为相空间重构时的最佳延时τs,本文提出了与此不同的观点,即神经网络输入数据延时间隔τ的选取与τs无直接关系。综合考虑其他一些因素,认为ANN输入数据延时间隔τ取为1是最为合理的。给出了理论分析和实验验证。  相似文献   

18.
基于RBF神经网络的软基沉降预测研究   总被引:2,自引:0,他引:2  
将神经网络理论引入软基沉降预测领域.借助自控领域信号处理的思想,应用改进后的径向基函数神经网络的映射模式进行软基沉降的短期预测;软基沉降的长期预测实质上为基于神经网络的多维欧氏空间的曲面拟合问题,将地基压缩层从上到下分成若干段,每段的土性指标按段内各层土在段中的长度取加权平均作为系统的输入,将某个沉降模型的沉降曲线参数作为系统的输出,可以预测后期沉降曲线走势.实践表明,建立的基于RBF神经网络的软基沉降短期预测和长期预测模型是可行的,只要有足够多的训练样本,长期预测可以达到比较精确的预测效果.表5,参9.  相似文献   

19.
用人工神经网络预测噪声环境的混沌时间序列是一个重要的问题,因为许多实际的时间序列数据都是含噪声的.提出一种利用积单元神经网络(PUNN)预测噪声环境的混沌时间序列的方法,它采用了粒子群优化器(PSO)训练PUNN网络.用所提方法对Lorenz混沌序列做了仿真实验,结果表明所提方法结构简单、泛化能力强,是一种有效的方法;当PUNN网络的输入节点数目为2或3时,预测精度更高,而且泛化能力也更强.  相似文献   

20.
基于PCA的RBF神经网络预测方法研究   总被引:1,自引:0,他引:1  
主成分分析(PCA)法可以提取样本集的主成分,实现样本的最优压缩,从而降低样本的维数。针对用RBF神经网络进行多因素时间序列预测时样本特征指标过多的问题,提出用统计理论的PCA方法对数据进行预处理,再选出几个主成分作为神经网络的输入节点.仿真实验表明,基于PCA的RBF神经网络模型在拟合预测中与一般的RBF神经网络模型相比有较好效果,简化了网络结构,改善了预测精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号