首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well known that adipose tissue has a critical role in the development of obesity and metabolic diseases and that adipose tissue acts as an endocrine organ to regulate lipid and glucose metabolism. Accumulating in the adipose tissue, fatty acids serve as a primary source of essential nutrients and act on intracellular and cell surface receptors to regulate biological events. G protein-coupled receptor 120 (GPR120) represents a promising target for the treatment of obesity-related metabolic disorders for its involvement in the regulation of adipogenesis, inflammation, glucose uptake, and insulin resistance. In this review, we summarize recent studies and advances regarding the systemic role of GPR120 in adipose tissue, including both white and brown adipocytes. We offer a new perspective by comparing the different roles in a variety of homeostatic processes from adipogenic development to adipocyte metabolism, and we also discuss the effects of natural and synthetic agonists that may be potential agents for the treatment of metabolic diseases.  相似文献   

2.
The metabolic syndrome (MetS) includes a group of medical conditions such as insulin resistance (IR), dyslipidemia and hypertension, all associated with an increased risk for cardiovascular disease. Increased visceral and ectopic fat deposition are also key features in the development of IR and MetS, with pathophysiological sequels on adipose tissue, liver and muscle. The recent recognition of aquaporins (AQPs) involvement in adipose tissue homeostasis has opened new perspectives for research in this field. The members of the aquaglyceroporin subfamily are specific glycerol channels implicated in energy metabolism by facilitating glycerol outflow from adipose tissue and its systemic distribution and uptake by liver and muscle, unveiling these membrane channels as key players in lipid balance and energy homeostasis. Being involved in a variety of pathophysiological mechanisms including IR and obesity, AQPs are considered promising drug targets that may prompt novel therapeutic approaches for metabolic disorders such as MetS. This review addresses the interplay between adipose tissue, liver and muscle, which is the basis of the metabolic syndrome, and highlights the involvement of aquaglyceroporins in obesity and related pathologies and how their regulation in different organs contributes to the features of the metabolic syndrome.  相似文献   

3.
The different expression patterns of genes for uncoupling proteins (UCPs) 1, 2 and 3 (ucp1, ucp2 and ucp3) were studied in interscapular brown adipose tissue (BAT) and in four white adipose tissue (WAT) depots (epididymal, inguinal, mesenteric and retroperitoneal) in male rats of different ages (18 days-12 months). UCP mRNA expression levels were determined by Northern blotting. In BAT, there were high levels of expression of UCP1 and UCP3 mRNA, but no detectable levels of UCP2 mRNA. Both ucp1 and ucp3 followed a similar expression pattern with age, with high levels in suckling rats which decreased to 50% or less in rats just under 2 months old, declining thereafter until 5 months and then recovering with age. However, an additional peak of expression was observed for ucp3 at the age of 3 months. In WAT, ucp1 expression was rare: occasional expression was found for UCP1 mRNA in the retroperitoneal depot in suckling rats and in the epididymal and inguinal depots in suckling and mature adult rats. ucp2 and ucp3 had different developmental expression patterns, but these were similar for each gene in the different depots studied. UCP3 mRNA was highly expressed in rats soon after birth, it decreased until 3 months, and increased thereafter, except for the mesenteric WAT where ucp3 expression decreased until 7 months before recovering. The fact that changes with age of both ucp1 and ucp3 expression have a similar profile in BAT, which is also similar to the ucp3 and also ucp1 profiles in some WAT depots, might reflect a common regulatory pattern for the expression of these genes, and also a common function. In contrast to ucp1 and ucp3, ucp2 had a peak of expression at about 2 months, and lower expression at 3 months, suggesting different regulation and probably a different role for this UCP.  相似文献   

4.
In the course of the last decades, metabolism research has demonstrated that adipose tissue is not an inactive tissue. Rather, adipocytes are key actors of whole body energy homeostasis. Numerous novel regulators of adipose tissue differentiation and function have been identified. With the constant increase of obesity and associated disorders, the interest in adipose tissue function alterations in the XXIst century has become of paramount importance. Recent data suggest that adipocyte differentiation, adipose tissue browning and mitochondrial function, lipogenesis and lipolysis are strongly modulated by the cell division machinery. This review will focus on the function of cell cycle regulators in adipocyte differentiation, adipose tissue function and whole body energy homeostasis; with particular attention in mouse studies.  相似文献   

5.
Adipose tissue is an endocrine organ capable of secreting a number of adipokines with a role in the regulation of adipose tissue and whole-body metabolism. We used two-dimensional gel electrophoresis combined with mass spectrometry to profile the secreted proteins from (pre)adipocytes. The culture medium of 3T3-L1 cells during adipocyte differentiation was screened, and 41 proteins that responded to blocking of secretion by 20°C treatment and/or brefeldin A treatment were identified. Prohibitin, stress-70 protein, and adhesion-regulating molecule 1 are reported for the first time as secreted proteins. In addition, procollagen C-proteinase enhancer protein, galectin-1, cyclophilin A and C, and SF20/IL-25 are newly identified as adipocyte secreted factors. Secretion profiles indicated a dynamic environment including an actively remodeling extracellular matrix and several factors involved in growth regulation.Received 15 June 2004; received after revision 26 July 2004; accepted 2 August 2004  相似文献   

6.
Programmed cell clearance   总被引:10,自引:0,他引:10  
Apoptosis, a physiological process of self-annihilation, is essential during development and for the maintenance of tissue homeostasis. Considerable efforts have been made in recent years to elucidate the molecular mechanisms that govern this mode of cellular demise; however, the subsequent recognition and removal of apoptotic corpses by neighboring phagocytes has received less attention. Nevertheless, macrophage engulfment of apoptotic cells is known to be important in the remodeling of tissues, and contributes to the resolution of inflammation through the removal of effete cells prior to the release of noxious cellular constituents. Moreover, apoptotic cells are a potential source of self-antigens, and clearance of cell corpses is thought to preclude the induction of autoimmune responses. The view is thus emerging that tissue homeostasis is dependent not only on the balance between mitosis and apoptosis, but also on the rate of apoptosis versus that of cell clearance. This review aims to discuss the mechanisms and consequences of macrophage recognition and disposal of apoptotic cells, a process which will be referred to as programmed cell clearance.Received 16 April 2003; received after revision 22 May 2003; accepted 26 May 2003  相似文献   

7.

The remodeling of the mitochondrial network is a critical process in maintaining cellular homeostasis and is intimately related to mitochondrial function. The interplay between the formation of new mitochondria (biogenesis) and the removal of damaged mitochondria (mitophagy) provide a means for the repopulation of the mitochondrial network. Additionally, mitochondrial fission and fusion serve as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been characterised in multiple tissue- and cell-types, and under various conditions. In skeletal muscle, the robust remodeling of the mitochondrial network is observed, particularly after injury where large portions of the tissue/cell structures are damaged. The significance of mitochondrial remodeling in regulating skeletal muscle regeneration has been widely studied, with alterations in mitochondrial remodeling processes leading to incomplete regeneration and impaired skeletal muscle function. Needless to say, important questions related to mitochondrial remodeling and skeletal muscle regeneration still remain unanswered and require further investigation. Therefore, this review will discuss the known molecular mechanisms of mitochondrial network remodeling, as well as integrate these mechanisms and discuss their relevance in myogenesis and regenerating skeletal muscle.

  相似文献   

8.
Mammalian thioredoxin reductase (TrxR) is a selenoprotein with three existing isoenzymes (TrxR1, TrxR2, and TrxR3), which is found primarily intracellularly but also in extracellular fluids. The main substrate thioredoxin (Trx) is similarly found (as Trx1 and Trx2) in various intracellular compartments, in blood plasma, and is the cell’s major disulfide reductase. Thioredoxin reductase is necessary as a NADPH-dependent reducing agent in biochemical reactions involving Trx. Genetic and environmental factors like selenium status influence the activity of TrxR. Research shows that the Trx/TrxR system plays a significant role in the physiology of the adipose tissue, in carbohydrate metabolism, insulin production and sensitivity, blood pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis. Based on recent research, it has been reported that the modulation of the Trx/TrxR system may be considered as a new target in the management of the metabolic syndrome, insulin resistance, and type 2 diabetes, as well as in the treatment of hypertension and atherosclerosis. In this review evidence about a possible role of this system as a marker of the metabolic syndrome is reported.  相似文献   

9.
10.
Following the initial discovery that adipose tissue actively synthesizes and secretes cytokines, obesity-induced inflammation has been implicated in the etiology of a host of disease states related to obesity, including cardiovascular disease and type II diabetes. Interestingly, a growing body of evidence similarly implicates sphingolipids as prime instigators in these same diseases. From the recent discovery that obesity-related inflammatory pathways modulate sphingolipid metabolism comes a novel perspective—sphingolipids may act as the dominant mediators of deleterious events stemming from obesity-induced inflammation. This paradigm may identify sphingolipids as an effective target for future therapeutics aimed at ameliorating diseases associated with chronic inflammation.  相似文献   

11.
The subventricular zone: new molecular and cellular developments   总被引:3,自引:0,他引:3  
The subventricular zone (SVZ), which lines the lateral walls of the lateral ventricle, persists as a neurogenic zone into adulthood and functions as the largest site of neurogenesis in the adult brain. In recent years, with the acceptance of the concept of postembryonic mammalian neurogenesis, neurogenesis in the adult SVZ has been an area of active research. With the rapid accumulation of new information on the SVZ, some of which is contradictory, summarizing existing knowledge on the SVZ and outlining future research directions in this area become important. In this review, we will cover recent molecular and cellular investigations that characterize the SVZ niche, SVZ neurogenesis, and SVZ cell migration within the adult brain.  相似文献   

12.
Adaptive immunity plays a critical role in IR and T2DM development; however, the biological mechanisms linking T cell costimulation and glucose metabolism have not been fully elucidated. In this study, we demonstrated that the costimulatory molecule OX40 controls T cell activation and IR development. Inflammatory cell accumulation and enhanced proinflammatory gene expression, as well as high OX40 expression levels on CD4+ T cells, were observed in the adipose tissues of mice with diet-induced obesity. OX40-KO mice exhibited significantly less weight gain and lower fasting glucose levels than those of WT mice, without obvious adipose tissue inflammation. The effects of OX40 on IR are mechanistically linked to the promotion of T cell activation, Th1 cell differentiation and proliferation—as well as the attenuation of Treg suppressive activity and the enhancement of proinflammatory cytokine production—in adipose tissues. Furthermore, OX40 expression on T cells was positively associated with obesity in humans, suggesting that our findings are clinically relevant. In summary, our study revealed that OX40 in CD4+ T cells is crucial for adipose tissue inflammation and IR development. Therefore, the OX40 signaling pathway may be a new target for preventing or treating obesity-related IR and T2DM.  相似文献   

13.
Current applications of single-cell PCR   总被引:7,自引:0,他引:7  
The advent of the polymerase chain reaction (PCR) has revolutionised the way in which molecular biologists view their task at hand, for it is now possible to amplify and examine minute quantities of rare genetic material: the limit of this exploration being the single cell. It is especially in the field of prenatal diagnostics that this ability has been readily seized upon, as it has opened up the prospect of preimplantation genetic analysis and the use of fetal cells enriched from the blood of pregnant women for the assessment of single-gene Mendelian disorders. However, apart from diagnostic applications, single-cell PCR has proven to be of enormous use to basic scientists, addressing diverse immunological, neurological and developmental questions, where both the genome but also messenger RNA expression patterns were examined. Furthermore, recent advances, such as optimised whole genome amplification (WGA) procedures, single-cell complementary DNA arrays and perhaps even single-cell comparative genomic hybridisation will ensure that the genetic analysis of single cells will become common practice, thereby opening up new possibilities for diagnosis and research.  相似文献   

14.
Muscular dystrophy is a heterogeneous group of genetic disorders characterised by progressive muscle tissue degeneration. No effective treatment has been discovered for these diseases. Preclinical and clinical studies aimed at the development of new therapeutic approaches have been carried out, primarily in subjects affected with dystrophinopathies (Duchenne and Becker muscular dystrophy). In this review, we outline the current therapeutic approaches and past and ongoing clinical trials, highlighting both the advantages and limits of each one. The experimental designs of these trials were based on different rationales, including immunomodulation, readthrough strategies, exon skipping, gene therapy, and cell therapy. We also provide an overview of available outcome measures, focusing on their reliability in estimating meaningful clinical improvement in order to aid in the design of future trials. This perspective is extremely relevant to the field considering the recent development of novel therapeutic approaches that will result in an increasing number of clinical studies over the next few years.  相似文献   

15.
Aging clock: the watchmaker’s masterpiece   总被引:1,自引:0,他引:1  
The phenomenon of cellular senescence has been known for almost four decades. Yet, until very recently, the molecular mechanisms that lead to senescence have been poorly understood. However, substantial progress has been made in the last few years toward identifying the pathways executing senescence. This r view focuses on two major advances in this field, the telomere aging clock theory and the cell cycle regulatory mechanisms in senescent cells. These recent studies indicate that cellular senescence is a highly elaborate and active process, which presumably works as an anti-oncogenic mechanism.  相似文献   

16.
Fibroblast growth factor 21 (FGF21) has been proposed as a novel putative therapeutic agent in type 2 diabetes. A large amount of data, predominantly obtained from murine models but also from non-human primates, suggest that FGF21 ameliorates obesity-associated hyperglycemia and hyperlipidemia primarily via effects on adipose tissue and the pancreas. In addition, FGF21 has been reported to play a pivotal regulatory role in starvation and ketosis. However, while it is clear that FGF21 has potent effects in vivo in several animal models, the exact mechanisms remain elusive. Moreover, very recent results from different human cohort studies have shown a paradoxical regulation of plasma FGF21 in obesity and type 2 diabetes as well as other important qualitative differences in the effects and regulation of FGF21 between rodents and humans. This review focuses on the most recently published data on FGF21 with emphasis on results obtained in humans.  相似文献   

17.
Under in vitro experimental conditions in which insulin increases adipose tissue lipoprotein lipase, cyclic GMP or dibutyryl cyclic GMP has no effect on this enzyme in rat adipose tissue fragments, or on either the intra- or extracellular forms of this enzyme in isolated fat cells. These results do not support the involvement of cyclic GMP in the insulin-stimulation of lipoprotein lipase in adipose tissue.  相似文献   

18.
19.
The heart is regarded as an endocrine organ as well as a pump for circulation, since atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were discovered in cardiomyocytes to be secreted as hormones. Both ANP and BNP bind to their receptors expressed on remote organs, such as kidneys and blood vessels; therefore, the heart controls the circulation by pumping blood and by secreting endocrine peptides. Cardiomyocytes secrete other peptides besides natriuretic peptides. Although most of such cardiomyocyte-derived peptides act on the heart in autocrine/paracrine fashions, several peptides target remote organs. In this review, to overview current knowledge of endocrine properties of the heart, we focus on cardiomyocyte-derived peptides (cardiomyokines) that act on the remote organs as well as the heart. Cardiomyokines act on remote organs to regulate cardiovascular homeostasis, systemic metabolism, and inflammation. Therefore, through its endocrine function, the heart can maintain physiological conditions and prevent organ damage under pathological conditions.  相似文献   

20.
Adaptive thermogenesis is an important component of energy expenditure. Brown adipocytes are best known for their ability to convert chemical energy into heat. Beige cells are brown-like adipocytes that arise in white adipose tissue in response to certain environmental cues to dissipate heat and improve metabolic homeostasis. A large body of intrinsic factors and external signals are critical for the function of beige adipocytes. In this review, we discuss recent advances in our understanding of neuronal, hormonal, and metabolic regulation of the development and activation of beige adipocytes, with a focus on the regulation of beige adipocytes by other organs, tissues, and cells. Understanding the cellular and molecular mechanisms of inter-organ regulation of adipose tissue browning may provide an avenue for combating obesity and associated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号