首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
We consider a minimal cascade model previously proposed11 for the mitotic oscillator driving the embryonic cell division cycle. The model is based on a bicyclic phosphorylation-dephosphorylation cascade involving cyclin and cdc2 kinase. By constructing stability diagrams showing domains of periodic behavior as a function of the maximum rates of the kinases and phosphatases involved in the two cycles of the cascade, we investigate the role of these converter enzymes in the oscillatory mechanism. Oscillations occur when the balance of kinase and phosphatase rates in each cycle is in a range bounded by two critical values. The results suggest ways to arrest the mitotic oscillator by altering the maximum rates of the converter enzymes. These results bear on the control of cell proliferation.  相似文献   

2.
Golgi-endomannosidase provides an alternate glucosidase-independent pathway of glucose trimming. Activity for endomannosidase is detectable in various tissues and cell lines but not in CHO cells. Cloning of CHO cell endomannosidase revealed that the highly conserved Trp188 and Arg177 of vertebrate endomannosidase were both substituted by Cys. The Trp188Cys substitution was functionally important since it alone resulted in endoplasmic reticulum (ER) mislocalization of endomannosidase and caused the greatly reduced in vivo activity. These effects could be reversed in cells with a back-engineered Cys188Trp CHO cell endomannosidase, in particular N-glycans of α1-antitrypsin became fully processed. The intramolecular disulfide bridge of CHO cell endomannosidase formed with the additional Cys188 was not solely responsible for the reduced enzyme activity since endomannosidase with engineered Cys188Ala or Ser substitutions did not restore enzyme activity and was ER mislocalized. Thus, the conserved Trp188 residue in endomannosidases is of critical importance for correct subcellular localization and in vivo activity of the enzyme. Received 7 May 2007; received after revision 31 May 2007; accepted 11 June 2007  相似文献   

3.
Summary 1-(Substituted)benzyl-5-aminoimidazole-4-carboxamides are potent orally active inhibitors ofTrypanosoma cruzi infections in mice. The most active compounds are the 1-(4-chlorobenzyl)- and 1-(3,4-dichlorobenzyl)-analogs (L-153,094 [2] and L-153,153 [4], resp.) which are approximately 7-fold more potent upon oral administration than nifurtimox (Lampit) in suppressing parasite levels in the blood of mice with acuteTrypanosoma cruzi infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号