首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Voltage-dependent K+ channels are blocked by several drugs, including 4-aminopyridine (4-AP) and tetraethylammonium (TEA). 4-AP is most widely used to localize K+ channels in mammalian and non-mammalian nerve fibers, but 4-AP and TEA alter various K+ channels and/or preparations in specific ways. The reason is not known, in part because dissociation constants for 4-AP and TEA have not been measured for nodal and internodal K+ channels in the same fibers. Smith and Schauf showed that the density of nodal versus paranodal K+ channels in frog nerves depends on fiber diameter. This size dependence was used to determine the relative sensitivity of nodal and internodal K+ channels to 4-AP and TEA, and to compare voltage- and time-dependent activation. The results show nodal and internodal K+ channels activate similarly. However, internodal channels are selectivity blocked by 4-AP while TEA is more effective on nodal channels. A high sensitivity of internodal K+ channels may explain why 4-AP improves symptoms in diseases such as multiple sclerosis.  相似文献   

2.
Potassium currents in cardiac cells   总被引:6,自引:0,他引:6  
The kinetic properties of the inwardly rectifying K current and the transient outward current in cardiac cells were investigated. In sheep Purkinje fibers superfused with Na-free K-free solution, time-dependent changes in the conductance of the inward rectifier are described. In patch clamp experiments the inward rectifier inactivates during hyperpolarization, as can be seen by a decrease in the open state probability. Using whole cell clamp on ventricular myocytes it is demonstrated that the inactivation during hyperpolarization is due to blocking of the channel by external Na, Mg and Ca. The channels responsible for the transient outward current in cow, sheep and rabbit Purkinje fibers are identified using single channel recording. It is demonstrated that in all three preparations the channels are K-selective. The channel in cow Purkinje cells has a large conductance and is regulated by voltage and internal Ca concentration. The channels identified in the sheep and rabbit cells have a much smaller conductance.  相似文献   

3.
4-aminopyridine (4-AP) at micromolar concentrations, increases the end-plate potential amplitude in curarized preparations and the mean quantal content in every preparation tested, but the spontaneous release is not modified by 4-AP. These results can explain the anticurare activity observed in the wole animal or in vitro. 4-AP prolongs the falling phase of the muscle action potential without change in the muscle membrane potential.  相似文献   

4.
Summary Normally the pacemaker of the mammalian heart is located in the sinus node. In the rabbit the sinus node can be subdivided into two regions, the center of the node where the impulse originates and the border zone through which the impulse is conducted towards the atrium. Conduction properties of both regions were investigated. It appeared that conduction velocity increases and refractoriness decreases when one goes from the nodal center towards the atrium. The tissue mass of the atrium is large in comparison to the sinus node and normally the resting membrane potential of atrial fibers is more negative than that of nodal fibers; consequently, a potential difference exists causing a current flow between both areas. Evidently this hyperpolarizing current flow depresses impulse formation in the border zone fibers which have better intrinsic pacemaker properties than fibers in the nodal center. If the impulse has reached the atrium it is conducted with a relatively high safety factor and will reach the AV node in principle without difficulty. The AV node, if deprived of sinus nodal dominance, develops spontaneous activity originating from the lower nodal fibers. Also in this structure, electrotonic depression by surrounding tissue causes deceleration of the pacemaker.  相似文献   

5.
Normally the pacemaker of the mammalian heart is located in the sinus node. In the rabbit the sinus node can be subdivided into two regions, the center of the node where the impulse originates and the border zone through which the impulse is conducted towards the atrium. Conduction properties of both regions were investigated. It appeared that conduction velocity increases and refractoriness decreases when one goes from the nodal center towards the atrium. The tissue mass of the atrium is large in comparison to the sinus node and normally the resting membrane potential of atrial fibers is more negative than that of nodal fibers; consequently, a potential difference exists causing a current flow between both areas. Evidently this hyperpolarizing current flow depresses impulse formation in the border zone fibers which have better intrinsic pacemaker properties than fibers in the nodal center. If the impulse has reached the atrium it is conducted with a relatively high safety factor and will reach the AV node in principle without difficulty. The AV node, if deprived of sinus nodal dominance, develops spontaneous activity originating from the lower nodal fibers. Also in this structure, electrotonic depression by surrounding tissue causes deceleration of the pacemaker.  相似文献   

6.
Using human erythrocytes of known antigenic density, sensitized by ABO and Rhesus (D) alloantibodies, it is shown that K cell cytotoxicity mediated by peripheral blood lymphocytes is directly correlated with the number of IgG molecules specifically bound to the target cell surface. The lytic sensitivity of P1k but not P2 or p erythrocytes coated with anti-Tja (anti-P + P1 + Pk) antibodies, demonstrates that effector K cells are mainly triggered through the IgG ANTI-Pk component of such sera.  相似文献   

7.
G Y Han  Y H Wang  H C McBay  J Johnson  P F Han 《Experientia》1985,41(9):1149-1151
Chicken liver fructose 1,6-bisphosphatase is readily immobilized on CNBr-activated Sepharose. The immobilization alters some enzymatic properties. They include broader pH activity curve, loss of activation by K+ or NH+4, increased resistance to inactivation by trypsin, decreased sensitivity to AMP inhibition, and loss of cooperative interaction among AMP-binding sites. The immobilized enzyme retains about 38% or 19% of the specific activity of the native enzyme when the activity is measured in the absence or presence of K+, respectively.  相似文献   

8.
9.
The superfused rat cuneate nucleus has been used to investigate the sensitivity of primary afferent terminals and of evoked primary afferent depolarization (PAD) to alterations in extracellular K+ and Cl- ions levels. Results indicate that PAD is caused by an efflux of Cl- from primary afferent terminals rather than by an increase in extracellular K+.  相似文献   

10.
Alcian blue and plumbagin induced transient Ca2+ release from fragmented sarcoplasmic reticulum. Dithiothreitol (DTT) and glutathione (GSH) partially blocked Ca2+ release induced by these oxidizing compounds. Pretreatment of alcian blue and plumbagin with DTT or GSH for more than 1 min was required to abolish the ability of the oxidizing compounds to release Ca2+. Mg2+ and ruthenium red completely blocked alcian blue-and plumbagin-induced Ca2+ release. These results suggest that oxidation of sulfhydryls on Ca2+ release channels induces Ca2+ release even in the presence of GSH in situ.  相似文献   

11.
Cellular and Molecular Life Sciences - Compound fiber action potentials of stratum radiatum afferents in slices from human and rat hippocampus are shown to be prolonged by 4-aminopyridine (4-AP)....  相似文献   

12.
The volume regulation process at work in rabbit kidney cortex slices submitted to hypo-osmotic media show both a swelling limitation and a volume readjustment phase. Swelling limitation is Na+ dependent and is blocked by ouabain 10(-3) M. There is, however, no need to implicate the activity of a ouabain sensitive Na+ /K+ pump in this process.  相似文献   

13.
The (Na+ 4 K+)- and Mg2+-dependent ATPase distribution in several brain areas has been investigated in Quaking mutant mice characterized by myelin deficiency. A marked decrease of (Na+ + K+)-ATPase activity has been found in limbic structures, hypothalamus and cerebellum. The Mg2+-dependent activity did not change. A possible involvement of the impairment of the (Na+ + K+)-ATPase activity in the seizure susceptibility of this mice is discussed.  相似文献   

14.
By the patch clamp experiments, two serotonin-sensitive K+ channels (SL-channel and SS-channel) were demonstrated in the identified heart excitatory neurone (PON) of the African giant snail, Achatina fulica Fèrussac. The activities of both channels could be recorded in the steady state and those activities disappeared on application of 5-HT.  相似文献   

15.
The mechanism by which static and low-frequency magnetic fields are transduced into biological signals responsible for reported effects on brain electrical activity is not yet ascertained. To test the hypothesis that fields can cause a subthreshold change in the resting membrane potential of excitable cells, we measured changes in transmembrane current under voltage clamp produced in SH-SY5Y neuroblastoma cells, using the patch-clamp method in the whole-cell configuration. In separate experiments, cells were exposed to static fields of 1, 5, and 75 G, to time-varying fields of 1 and 5 G, and to combined static and time-varying fields tuned for resonance of Na+, K+, Ca2+, or H+. To increase sensitivity, measurements were made on cells connected by gap junctions. For each cell, the effect of the field was evaluated on the basis of 100 trials consisting of a 5-s exposure immediately followed by a 5-s control period. In each experiment, the field had no discernible effect on the transmembrane current in the vicinity of zero current (- 50 mV voltage clamp). The sensitivity of the measuring system was such that we would have detected a current corresponding to a change in membrane potential as small as 38 microV. Consequently, if sensitivity of mammalian cells to magnetic fields is mediated by subthreshold changes in membrane potential, as in sensory transduction of sound, light, and other stimuli, then the ion channels responsible for the putative changes are probably present only in specialized sensory neurons or neuroepithelial cells. A change in transmembrane potential in response to magnetic fields is not a general property of excitable cells in culture.  相似文献   

16.
The K+ conductance in Myxicola giant axons activates in two phases which are pharmacologically separable. The fast phase of K+ activation is specifically inhibited by 4-aminopyridine and by the substitution of D2O for H2O. We suggest Myxicola giant axons, like the amphibian node of Ranvier, may possess more than one variety of K+ channel.  相似文献   

17.
On acontia ofCalliactis parasitica it was observed that mechanical stimuli applied by a gelatin probe, a method effective in tentacles of Anthozoa, do not induce the discharge of nematocytes. Hyposmotic shock, performed by treatment with NaCl solution 35% hyposmotic with respect to sea water, induces, in the presence of Ca2+, the discharge that spreads along the acontial filament, as previously observed following treatment with SCN. The hyposmotic shock-induced discharge is blocked by Gd3+ at a concentration of 1 M. 10 M Gd3+ prevents also the SCN-induced discharge. These results suggest the presence of stretch activated cation channels either in nematocytes and/or in supporting cells as well as a possible effect of SCN on this class of ion channels.  相似文献   

18.
G Leng  S D Comis 《Experientia》1979,35(6):767-768
Raising the K+ concentration in scala tympani of the guinea-pig cochlea generally caused a substantial increase in the spontaneous firing rate of single auditory nerve fibres. This effect was not accompanied by any observed reduction in the threshold sensitivity of these fibres. These findings cast doubt on current theories of cochlear transduction.  相似文献   

19.
Summary There are 4 stages in the growth of mosaic (axial) muscle, which is the predominating tissue in trout; the stages are distinguishable by the modal values and range of their fibre diameters over the size range 2.3 to 50+cm fork length. Up to 50 cm, most of the increase in mosaic muscle is attributable to continuous recruitment of new fibers. Beyond 50 cm, further growth is a result of increase in diameter of existing fibers.  相似文献   

20.
Glycolysis is an evolutionary conserved metabolic pathway that provides small amounts of energy in the form of ATP when compared to other pathways such as oxidative phosphorylation or fatty acid oxidation. The ATP levels inside metabolically active cells are not constant and the local ATP level will depend on the site of production as well as the respective rates of ATP production, diffusion and consumption. Membrane ion transporters (pumps, exchangers and channels) are located at sites distal to the major sources of ATP formation (the mitochondria). We review evidence that the glycolytic complex is associated with membranes; both at the plasmalemma and with membranes of the endo/sarcoplasmic reticular network. We examine the evidence for the concept that many of the ion transporters are regulated preferentially by the glycolytic process. These include the Na+/K+-ATPase, the H+-ATPase, various types of Ca2+-ATPases, the Na+/H+ exchanger, the ATP-sensitive K+ channel, cation channels, Na+ channels, Ca2+ channels and other channels involved in intracellular Ca2+ homeostasis. Regulation of these pumps, exchangers and ion channels by the glycolytic process has important consequences in a variety of physiological and pathophysiological processes, and a better understanding of this mode of regulation may have important consequences for developing future strategies in combating disease and developing novel therapeutic approaches. Received 20 July 2007; received after revision 30 July 2007; accepted 17 August 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号