首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Motor neuron diseases (MNDs) are a group of neurological disorders that selectively affect motor neurons. There are currently no cures or efficacious treatments for these diseases. In recent years, significant developments in stem cell research have been applied to MNDs, particularly regarding neuroprotection and cell replacement. However, a consistent source of motor neurons for cell replacement is required. Human embryonic stem cells (hESCs) could provide an inexhaustible supply of differentiated cell types, including motor neurons that could be used for MND therapies. Recently, it has been demonstrated that induced pluripotent stem (iPS) cells may serve as an alternative source of motor neurons, since they share ES characteristics, self-renewal, and the potential to differentiate into any somatic cell type. In this review, we discuss several reproducible methods by which hESCs or iPS cells are efficiently isolated and differentiated into functional motor neurons, and possible clinical applications.  相似文献   

3.
4.
Human pluripotent stem cells, including embryonic (hES) and induced pluripotent stem cells (hiPS), retain the ability to self-renew indefinitely, while maintaining the capacity to differentiate into all cell types of the nervous system. While human pluripotent cell-based therapies are unlikely to arise soon, these cells can currently be used as an inexhaustible source of committed neurons to perform high-throughput screening and safety testing of new candidate drugs. Here, we describe critically the available methods and molecular factors that are used to direct the differentiation of hES or hiPS into specific neurons. In addition, we discuss how the availability of patient-specific hiPS offers a unique opportunity to model inheritable neurodegenerative diseases and untangle their pathological mechanisms, or to validate drugs that would prevent the onset or the progression of these neurological disorders.  相似文献   

5.
Despite the recent promising results of clinical trials using human pluripotent stem cell (hPSC)-based cell therapies for age-related macular degeneration (AMD), the risk of teratoma formation resulting from residual undifferentiated hPSCs remains a serious and critical hurdle for broader clinical implementation. To mitigate the tumorigenic risk of hPSC-based cell therapy, a variety of approaches have been examined to ablate the undifferentiated hPSCs based on the unique molecular properties of hPSCs. In the present review, we offer a brief overview of recent attempts at selective elimination of undifferentiated hPSCs to decrease the risk of teratoma formation in hPSC-based cell therapy.  相似文献   

6.
Protein homeostasis, or proteostasis, is essential for cell function, development, and organismal viability. The composition of the proteome is adjusted to the specific requirements of a particular cell type and status. Moreover, multiple metabolic and environmental conditions challenge the integrity of the proteome. To maintain the quality of the proteome, the proteostasis network monitors proteins from their synthesis through their degradation. Whereas somatic stem cells lose their ability to maintain proteostasis with age, immortal pluripotent stem cells exhibit a stringent proteostasis network associated with their biological function and intrinsic characteristics. Moreover, growing evidence indicates that enhanced proteostasis mechanisms play a central role in immortality and cell fate decisions of pluripotent stem cells. Here, we will review new insights into the melding fields of proteostasis and pluripotency and their implications for the understanding of organismal development and survival.  相似文献   

7.
8.
Summary The level of some enzymatic activities in red blood cells before and after photohemolysis induced by protoporphyrin IX was studied. A 30% decrease in catalase activity was found both in normal erythrocytes and those from patients affected by favism. Other proteins though present in larger amounts inside the erythrocytes are not affected by the photohemolytic process.  相似文献   

9.
The level of some enzymatic activities in red blood cells before and after photohemolysis induced by protoporphyrin IX was studied. A 30% decrease in catalase activity was found both in normal erythrocytes and those from patients affected by favism. Other proteins though present in larger amounts inside the erythrocytes are not affected by the photohemolytic process.  相似文献   

10.
Cancer stem cells (CSCs) play an important role in the development, invasion, and drug resistance of carcinoma, but the exact phenotype and characteristics of ovarian CSCs are still disputable. In this study, we identified cancer stem cell-like cells (CSC-LCs) and investigated their characteristics from the ovarian adenocarcinoma cell line 3AO. Our results showed that CSC-LCs were enriched in sphere-forming test and highly expressed CD44+CD24. The spheres and CD24 cells possessed strong tumorigenic ability by transplantation into nonobese diabetic/severe combined immunodeficient mice. CD44+CD24 cells expressed stem cell markers and differentiated to CD44+CD24+ cells by immunofluorescence assay and fluorescence-activated cell-sorting analysis. In vitro experiments verified that CD44+CD24 cells were markedly resistant to carboplatin and paclitaxol. In conclusion, our study identifies the CD44+CD24 phenotype, self-renewal, high tumorigenicity, differentiation potential, and drug resistance of ovarian CSC-LCs. Our findings may provide the evidence needed to explore a new strategy in the treatment of ovarian cancer.  相似文献   

11.
Summary Glucan, a beta-1, 3 polyglucose, was administered to mice either 1 h before or 1 h after a 650 rad exposure to cobalt-60 radiation. Compared to radiation controls, glucan-treated mice consistantly exhibited a more rapid recovery of pluripotent stem cells and committed granulocyte, macrophage, and erythroid progenitor cells. This may partially explain the mechanism by which glucan also enhances survival in otherwise lethally irradiated mice.  相似文献   

12.
13.
14.
OCT4 is considered a main regulator of embryonic stem cell pluripotency and self renewal capacity. It was shown that relevant OCT4 expression only occurs in cells of embryonic pluripotent nature. However, several recent publications claimed to have demonstrated OCT4 expression in human somatic tumor cells, human adult stem or progenitor cells and differentiated cells.We analysed 42 human tumor cell lines from 13 entities and human bone marrowderived mesenchymal stem cells (MSC). To validate OCT4 expression we used germ cell tumor (GCT) cell lines, derived xenografts and GCT samples. Analysis by RT-PCR, western blotting, immunocytochemistry and immunohistochemistry was performed. With exception of typical embryonal carcinoma cells, we did not observe reliable OCT4 expression in somatic tumor cell lines and MSC. We suggest that a high level of expression of the OCT4 protein together with its nuclear localization still remains a reliable and definitive feature of cells with embryonic pluripotent nature. Received 30 September 2008; received after revision 05 November 2008; accepted 10 November 2008  相似文献   

15.
Stem and progenitor cells are characterized by their ability to self-renew and produce differentiated progeny. A fine balance between these processes is achieved through controlled asymmetric divisions and is necessary to generate cellular diversity during development and to maintain adult tissue homeostasis. Disruption of this balance may result in premature depletion of the stem/progenitor cell pool, or abnormal growth. In many tissues, including the brain, dysregulated asymmetric divisions are associated with cancer. Whether there is a causal relationship between asymmetric cell division defects and cancer initiation is as yet not known. Here, we review the cellular and molecular mechanisms that regulate asymmetric cell divisions in the neural lineage and discuss the potential connections between this regulatory machinery and cancer.  相似文献   

16.
17.
Zusammenfassung Synchronisierte menschliche Nieren-T-Zellen zeigen eine Mitoseverzögerung, wenn sie in der G1-, S- oder G2-Phase des Zyklus Methylglyoxal oder Kethoxal ausgesetzt werden. Die Mitoseverzögerung wird durch 5mM Cysteamin eliminiert.  相似文献   

18.
J F Scaife 《Experientia》1969,25(2):178-179
  相似文献   

19.
20.
The isolation of human epidermal stem cells is critical for their clinical applications. In the present study, we isolated three populations of epidermal keratinocytes according to their ability to adhere to collagen type IV: i.e., rapidly adhering (RA), slowly adhering (SA), and non-adhering (NA) cells. The aim of this study was to characterize RA cells and to investigate the possibility of using these cells for epidermis reconstruction. To identify RA cells, flow cytometric analysis was performed using anti-6 integrin and anti-CD71 antibodies. RA cells express high levels of 6 integrin and low levels of CD71, which are considered as markers of an epidermal stem cell nature. Furthermore, electron microscopy showed that RA cells are small and have a high nuclear to cytoplasmic ratio, whereas SA and NA cells have well-developed cellular organelles and abundant tonofilaments. Western blot analysis showed that RA cells are slow cycling and express p63, a putative epidermal stem cell marker, whereas SA and NA cells express c-Myc, which is known to regulate stem cell fate. To compare epidermal regenerative abilities, skin equivalents (SEs) were made using RA, SA, and NA cells. The epidermis constructed from RA cells was well formed compared to those formed from SA or NA cells. In addition, only SEs with RA cells expressed 6 integrin and 1 integrin at the basal layer. These results indicate that RA cells represent epidermal stem cells and are predominately comprised of stem cells. Therefore, the isolation of RA cells using a simple technique offers a potential route to their clinical application, because they are easily isolated and provide a high yield of epidermal stem cells.Received 2 July 2004; received after revision 20 August 2004; accepted 10 September 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号