首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
An important issue for in vivo gene therapy for cystic fibrosis (CF) is the percentage of cells within the CF airway that will require correction. In this study, we mixed populations of a CF airway cell line expressing either the normal cystic fibrosis transmembrane conductance regulator (CFTR) cDNA (corrected cells) or a reporter gene in defined percentages. As few as 6-10% corrected cells within an epithelial sheet generated C1-transport properties similar to sheets comprised of 100% corrected cells. Cell-cell coupling may serve as the mechanism for amplification of the functional effects of corrected cells. These data suggest that in vivo correction of all CF airway cells may not be mandatory.  相似文献   

2.
3.
Misprocessing and mislocalization of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) has been described for the major CF-causing mutation (delta F508) in heterologous expression systems in vitro. We have generated monoclonal antibodies (mAbs) to CFTR with the aim of localizing the protein and its CF variants in vivo. Of the tissues where CFTR was observed, only the sweat gland is readily available and does not undergo secondary changes due to CF disease pathology. Sweat ducts from CF patients homozygous for delta F508 did not show the typical apical membrane staining seen in control biopsies. This demonstrates that the biosynthetic arrest and intracellular retention of delta F508 CFTR initially observed in vitro does occur in vivo and emphasizes the need to focus efforts on understanding the mislocalization.  相似文献   

4.
5.
We have conducted a large systematic study of 365 cystic fibrosis (CF) chromosomes in a Celtic population from Brittany, France, in which we have been able to identify more than 98% of the cystic fibrosis gene mutations. We detected 19 different CFTR mutations located in 9 exons. Eleven of these mutations have not been described previously and nine of them are presented in this study. The denaturing gradient gel electrophoresis strategy we have used, can be applied to other populations suggesting that population screening for CF on a large scale might be possible.  相似文献   

6.
Many quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, but few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. Transgenic mice have been successfully used to analyse well-characterized genes suspected of contributing to quantitative traits. Although this approach is powerful for examining one gene at a time, it can be impractical for surveying the large genomic intervals containing many genes that are typically associated with QTLs. To screen for genes contributing to an asthma QTL mapped to human chromosome 5q3 (refs 6,7), we characterized a panel of large-insert 5q31 transgenics based on studies demonstrating that altering gene dosage frequently affects quantitative phenotypes normally influenced by that gene. This panel of human YAC transgenics, propagating a 1-Mb interval of chromosome 5q31 containing 6 cytokine genes and 17 partially characterized genes, was screened for quantitative changes in several asthma-associated phenotypes. Multiple independent transgenic lines with altered IgE response to antigen treatment shared a 180-kb region containing 5 genes, including those encoding human interleukin 4 (IL4) and interleukin 13 (IL13 ), which induce IgE class switching in B cells. Further analysis of these mice and mice transgenic for mouse Il4 and Il13 demonstrated that moderate changes in Il4 and Il13 expression affect asthma-associated phenotypes in vivo. This functional screen of large-insert transgenics enabled us to identify genes that influence the QTL phenotype in vivo.  相似文献   

7.
8.
We describe the successful application of a modified gene-trap approach, the secretory trap, to systematically analyze the functions in vivo of large numbers of genes encoding secreted and membrane proteins. Secretory-trap insertions in embryonic stem cells can be transmitted to the germ line of mice with high efficiency and effectively mutate the target gene. Of 60 insertions analyzed in mice, one-third cause recessive lethal phenotypes affecting various stages of embryonic and postnatal development. Thus, secretory-trap mutagenesis can be used for a genome-wide functional analysis of cell signaling pathways that are critical for normal mammalian development and physiology.  相似文献   

9.
Cloning of male mice from adult tail-tip cells.   总被引:34,自引:0,他引:34  
  相似文献   

10.
11.
12.
Extensive complementation between fused mitochondria is indicated by recombination of 'parental' mitochondrial (mt) DNA (ref. 1,2) of yeast and plant cells. It has been difficult, however, to demonstrate the occurrence of complementation between fused mitochondria in mammalian species through the presence of recombinant mtDNA molecules, because sequence of mtDNA throughout an individual tends to be uniform owing to its strictly maternal inheritance. We isolated two types of respiration-deficient cell lines, with pathogenic mutations in mitochondrial tRNAIle or tRNALeu(UUR) genes from patients with mitochondrial diseases. The coexistence of their mitochondria within hybrids restored their normal morphology and respiratory enzyme activity by 10-14 days after fusion, indicating the presence of an extensive and continuous exchange of genetic contents between the mitochondria. This complementation between fused mitochondria may represent a defence of highly oxidative organelles against mitochondrial dysfunction caused by the accumulation of mtDNA lesions with age.  相似文献   

13.
14.
15.
16.
17.
18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号