首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为实现对交通流局部特征的有效提取,提高交通速度预测模型的可解释性,提出基于K-means聚类与偏最小二乘(Partial Least Squares, PLS)回归的交通速度短时预测模型。模型采用时空相关矩阵挖掘路网中相邻路段交通速度之间的关联性,利用K-means聚类算法划分历史数据集,并选取实测出租车GPS数据验证模型对交通速度短时预测的准确性。实验结果表明,与ARIMA、PLS回归和LSTM模型相比,该模型的预测误差减少了约30%。  相似文献   

2.
随着我国经济的快速增长及城市化水平的不断提高,轨道交通在居民出行中发挥着越来越重要的作用。作为影响城市轨道交通运营效益和服务水平的关键因素,客流精准预测受到运营管理者和研究者的日益重视。为提高城市轨道交通客流预测精度,提出了基于麻雀搜索算法(SSA)和长短期记忆网络(LSTM)的SSA-LSTM组合模型。本文以杭州地铁一号线客流量数据为例,在选取轨道交通客流相关影响因素的基础上,利用建立的SSA-LSTM模型对相关站点进行短时客流预测,并与LSTM模型、遗传算法(GA)优化的LSTM模型(GA-LSTM)以及粒子群算法(PSO)优化的LSTM模型(PSO-LSTM)预测结果进行对比分析。结果表明,相比于前述参照模型,SSA-LSTM模型的预测精度分别提升了19.1%、9.7%和2.4%,并在均方根误差指标方面有更优异的表现。SSA-LSTM组合模型在城市轨道交通客流预测中具有一定的应用价值,具有协助运营管理者提高城市轨道交通运营管理效益和提高服务水平的潜力。  相似文献   

3.
K-means聚类算法是近年来数据挖掘学科的一个研究热点和重点,该算法是基于划分的聚类分析算法.目前这种算法在聚类分析中得到了广泛应用。本文将介绍K-means聚类算法的主要思想,及其优缺点。针对该算法经常陷入局部最优,以及对孤立点敏感等缺点,提出了一种基于模拟退火算法的方法对其进行优化,可以有效地防止该算法陷入局部最优的情况。  相似文献   

4.
一种改进的K-means聚类算法   总被引:1,自引:0,他引:1  
传统的K-means聚类算法对初始聚类中心的依赖程度很大,聚类结果会随聚类中心的选择不同波动很大,为了消除这种中心选择不确定性,提出一种改进的K-means聚类算法,从而有效地改善初始聚类中心点选择的随机性,提高聚类结果的稳定性.仿真实验结果表明,改进后的K-means聚类算法优于传统的算法.  相似文献   

5.
针对原始K-means算法的一系列问题,提出一种基于半监督的K-means聚类改进算法,能够自动进行聚类,找出最优K值,并且最大限度地找出孤立点.首先根据样本集自身的特点,按照"类内尽可能相似"原则一步一步形成数据集,然后对数据集进行"去噪"与合并相似簇,最后,利用少量的标记信息指导和修正聚类结果.在UCI的多个数据集...  相似文献   

6.
传统K-means 算法对于聚类初始点的选取和距离度量的计算异常敏感,因而很可能导致K-means 算法只能收敛得到局部最优解。为此,提出一种改进的K-means 算法,即K-means 聚类算法最优匹配算法,并进行了相关的算法实验分析。该改进算法首先对传统的K-means 聚类算法进行初始点的选取,并分析聚类结果。然后,分别从初始聚类中心的选择和距离算法的确定进行实验测试,引入轮廓系数评价聚类效果,分析实验结果可知,K-means 聚类算法最优匹配算法具有较好的稳定性和较高的聚类准确率。  相似文献   

7.
建立组合预测模型关键是单项预测方法的筛选,本文将采用灰色聚类分析方法对单项预测模型组进行筛选.首先依据所研究的实际问题,建立多个单项预测模型,然后计算每一个单项预测方法的点拟合相对误差,最后再利用这些数据,借助灰色聚类方法实行对比评估,构建组合预测模型需求的各个单项模型,以增强该模型预测的准确性.应用实例的分析表明该方法是可行的和有效的.  相似文献   

8.
介绍K-means聚类算法推导过程,并给出利用Python实现K-means算法的程序,以进行验证.  相似文献   

9.
《河南科学》2016,(3):348-351
传统K-means聚类算法中聚类初始中心点是随机确定的,实际聚类数据集中可能有孤立点,造成了每次聚类的结果不同,聚类质量不同,有时陷入局部优化状态.针对这些问题,研究者曾试图用距离法解决孤立点的判断和确定初始聚类中心.这种思路存在不科学性.因为孤立点不仅指远离其他点,同时它的周围点稀疏;另外,当数据量过大、数据特征值过多时,算法的运算量大,需要占用大量的计算机资源,运算速度过慢.对传统的K-means聚类算法进行研究,提出了基于密度参数和距离理论的初始聚类中心的确定和孤立点的判断,对传统的K-means聚类算法进行改进.  相似文献   

10.
为了改善蝙蝠算法在函数优化中稳定性差,易陷入局部最优的问题,利用云模型随机性和稳定倾向性的特点,提出了一种蝙蝠优化算法,根据个体适应度值,利用K-means聚类算法把种群划分为三个区域,分别采用不同的频率生成策略,使算法既能稳定的控制搜索空间范围,又能避开局部最优解,同基本的蝙蝠算法比较,仿真结果表明,该算法在函数优化问题中具有较高的精度和较快的搜索速度.  相似文献   

11.
基于K-means算法的RGB图像色彩聚类   总被引:1,自引:0,他引:1  
给出了一个利用K-means算法进行迭代聚类,并以聚类结果建立彩色图像调色板的算法。该算法在统计图像中各种颜色的RGB组合值出现次数的基础上,以聚类得到的256种颜色建立调色板,从而将BMP格式图像转换成GIF格式。实验表明,这种转换的色彩失真较小。  相似文献   

12.
基于信息熵改进的 K-means 动态聚类算法   总被引:1,自引:2,他引:1  
初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题.因此,提出一个改进的K-means算法.改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始聚类的赋权函数选出质量较高的初始聚类中心点;然后,为算法的终止条件设定标准阈值来减少算法迭代次数,从而减少学习时间;最后,通过删除由信息动态变化而产生的冗余信息来减少动态聚类过程中的干扰,以使算法达到更准确更高效的聚类效果.实验结果表明,当数据样本数量较多时,相比于传统的K-means算法和其他改进的K-means算法,提出的算法在准确率和执行效率上都有较大提升.  相似文献   

13.
客流观测数据的非平稳性和选择学习参数的主观性,是影响双向长短时记忆神经网络(Bidirectional Long Short-Term Memory, BiLSTM)预测公交站点短时客流精度的重要因素.通过自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition With Adaptive Noise, CEEMDAN)提升客流观测数据的平稳性,用粒子群算法(Particle Swarm Optimization,PSO)优化BiLSTM隐藏层神经元个数、学习率与训练次数;基于Theano和Tensorflow深度学习库Keras,构建了公交站点短时客流预测组合模型CEEMDAN-PSO-BiLSTM,用均方根误差与平均绝对误差进行预测精度检验,并在浙江省海宁市2个公交站点进行了应用.研究结果表明:客流预测精度由高到低依次为CEEMDAN-PSO-BiLSTM、CEEMDAN-BiLSTM、PSO-BiLSTM、BiLSTM和LSTM,2个站点CEEMDAN-PSO-BiLSTM比BiLSTM预测结果的均方根误差分别下...  相似文献   

14.
大型活动散场期间的地铁车站客流属于可预知的非常规客流,采用常规客流的统计预测方法难以准确预测其客流需求.基于深度学习,将历史客流规律、大型活动数据与实时自动售检票系统数据相结合,提出了一种适用于大型活动散场期间地铁车站的短时客流预测模型.首先对历史客流数据进行了拆分及降噪处理,并分析了活动客流特征.之后,基于深度学习框...  相似文献   

15.
K-means算法是聚类方法中常用的一种划分方法.基于扩展划分的思想,提出了一种基于扩展的K-means聚类算法(EK-means),在一定程度上避免了聚类结果陷入局部解的现象,减少了原始K-means算法因采用误差平方和准则函数而出现将大的聚类簇分割开的情况.该算法使用了基于距离的技术来处理孤立点,引进了一种基于扩展的方法进行聚类.实验表明该算法可扩展性好,能够很好的识别出孤立点或噪声,并且有很好的精度.  相似文献   

16.
对轨道交通进站客流进行准确的预测有助于城市交通系统更好的管理,及时做出应对措施.使用K-means聚类方法对南京地铁113个站点进行聚类,得到5个不同类别的轨道站点,分析不同类型站点进站客流的时序特征以及天气与工作日因素对客流的影响,发现是否为工作日对进站客流影响最为明显.用长短时记忆网络将前35天的数据作为训练集预测...  相似文献   

17.
基于进化策略的K-means聚类算法   总被引:3,自引:0,他引:3  
针对K-means聚类算法易陷入局部极小以及K值选取的问题,提出一类基于进化策略的聚类算法,可以有效地搜索最优聚类中心和聚类个数K;还提出了确定K值范围的经验公式,以减小搜索空间,提高搜索效率,并给出了理论分析.相对遗传算法而言,本方法鳊码简单,种群较小.对Fishers iris数据集的仿真实验表明,该方法得到最优解的可能性比经典算法大得多.  相似文献   

18.
K-means聚类算法研究   总被引:1,自引:0,他引:1  
K-means算法作为聚类分析算法,已被广泛地应用到诸多领域。本文研究了K-means算法的基本原理,并将其应用到高校学生入学信息分析中。高考学生入学的相关信息包含了大量重要的学习及其他方面的信息,对这些数据信息进行分析和研究,有助于教师对不同类别的学生进行不同方式的教学,做到因材施教。首先对学生的入学信息数据进行预处理,然后使用K-means算法,对学生信息进行分类评价;最后利用所获得的分类结果指导学生在大学期间的学习方向以及教师对学生的培养工作。  相似文献   

19.
FCM聚类算法具有线性的时间复杂度,但它对初始化非常敏感。而k-中心点轮换法对初始化不太敏感,但其缺点就是时间复杂度较高,不能直接应用到海量数据集的聚类分析中。为克服这两类聚类算法的缺点,而充分利用它们的优点,很自然地提出一种基于近似类抽样的组合聚类算法。这种组合聚类算法的时间复杂度是O(n2m)。仿真实验表明,它具有稳定的聚类结果。  相似文献   

20.
轨道交通的高速发展,使得站点的客流压力加剧,拥挤问题也带来了安全隐患.为简化客流预测模型训练时间,轻量化模型,采用K-means聚类,将客流数据进行分类,归一化数据,简化数据分布.在划分训练集和测试集后,分别利用长短时记忆网络(LSTM)模型和门控循环单元(GRU)模型对数据集进行训练.在不同时间粒度下分析了模型的可行性,对比两种算法的损失函数和运行时间.实验结果表明,在预测结果的准确性相近的情况下,GRU模型比LSTM模型有更短的拟合时间,同时模型本身更加简单,有着更好的适用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号