共查询到18条相似文献,搜索用时 78 毫秒
1.
环氧树脂改性水性聚氨酯的合成工艺与性能研究 总被引:13,自引:0,他引:13
探讨了环氧树脂E-44对水性聚氨酯进行改性,当DMPA含量为5wt%-7wt%,环氧树脂添加量为5wt%-8wt%,采用相反转分散方法时,可得到较稳定的环氧树脂改性水性聚氨酯分散液,且分散液综合性能较好;用环氧树脂改性的水性聚氨酯制备的涂膜具有硬度高,耐水性和耐溶剂性好等特点. 相似文献
2.
以异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、聚己二酸1,4-丁二醇酯为主要原料,1,4-丁二醇为小分子扩链剂,乙二胺基乙磺酸钠为亲水性扩链剂,环氧树脂E-51为改性剂,合成了固含量为50%的环氧树脂改性磺酸盐型水性聚氨酯乳液,并采用FT-IR、XRD、SEM、AFM、DSC和DMA方法考察环氧树脂用量对乳胶膜结晶性能的影响.结果表明:随着环氧树脂用量的增多,XRD谱图中21.2°和24.3°处的两个尖锐的谱峰高度明显变小,SEM和AFM图中乳胶膜硬段和软段的相分离程度显著减弱,DSC曲线上可以观察到清晰的胶膜熔融峰和结晶峰,胶膜的结晶度减小,DMA曲线上改性树脂软段的玻璃化温度有朝低温方向移动的趋势,说明环氧树脂的加入降低了聚氨酯胶膜的结晶性能. 相似文献
3.
环氧树脂改性水性聚氨酯乳液的制备 总被引:2,自引:0,他引:2
将环氧树脂作为大分子扩链剂合成了水性聚氨酯分散体.当反应温度在70~75℃时,环氧树脂中的环氧基开环较少,异氰酸酯NCO基转化率达到100%,预聚体的粘度为1.5 Pa.s,所得胶膜物理机械性能良好,拉伸强度达到10 MPa,断裂伸长高达450%.当环氧值在(0.27~1.16)mol/g,添加量在4%~6%之间时,所得分散体的外观好,物理机械性能好,同时储存稳定高.在添加环氧树脂后,当亲水扩链剂DMPA的用量在8%时,才能得到储存稳定的乳液.当用三乙胺进行中和时,所得的乳液外观发白,颗粒较粗;用氢氧化钠中和所得的乳液外观半透明,粒径较细;而氨水居于两者之间. 相似文献
4.
聚氨酯-环氧树脂-松香复合乳液的合成与表征 总被引:2,自引:0,他引:2
以聚已内酯二醇、甲苯二异氰酸酯、二羟甲基丙酸为基料, 以三羟甲基丙烷为交联剂,采用环氧树脂和松香对水性聚氨酯进行改姓,制备出环氧树脂和松香改性的聚氨酯复合乳液。用傅立叶变换红外光谱、粒度分析仪、凝胶渗透色谱、综合热分析仪等对其进行了表征。红外分析表明,环氧树脂中的羟基与异氰酯基发生反应,生成了氨基甲酸酯基,同时环氧基进行了开环反应,接枝到聚氨酯分子上;松香中羧基也参与了体系的反应,最终形成了环氧和松香改性水性聚氨酯。环氧树脂和松香含量增大,都会导致乳液粒径增大。改性后聚氨酯复合乳液的相对分子质量有一定程度的增大,达7.43Х105g.mol-1。三羟甲基丙烷用量对剥离强度有显著影响,其用量以不超过2.7%为宜。改性后聚氨酯的相容性好, 其胶膜分解温度高达260℃。采用该乳液制成的胶粘剂对多种复合薄膜具有较强的粘接能力。 相似文献
5.
聚酯型水性聚氨酯合成工艺 总被引:7,自引:0,他引:7
采用TDI与聚酯二元醇(T1136)和二羟甲基丙酸(DMPA)反应合成水性聚氨酯分散体,讨论了合成工艺、反应温度和时间对聚氨酸分散体性能的影响,并确定了反应温度和时间。结果表明,DMPA溶液加入分步合成法合成的水性聚氨酯具有较好的稳定性和机械性能。 相似文献
6.
以可再生资源松节油衍生物——甲基丙烯酸异冰片酯(IBOMA)为原料,采用共聚改性的方法制备了IBOMA改性水性聚氨酯复合乳液。研究了配方中的R值(n(—NCO)/n(—OH),异氰酸根指数)、DMPA(2,2-二羟甲基丙酸)含量、DEG(一缩二乙二醇)含量、中和度(以三乙胺与DMPA的摩尔比计算),以及反应时间对复合乳液的黏度、稳定性以及胶膜的吸水率、拉伸强度的影响,确定了适宜的改性工艺条件:IBOMA添加量为30%,R值为1.70,DMPA质量分数为4.0%,DEG质量分数为0.5%,中和度为100%,反应时间为6 h。在此条件下所制得的IBOMA改性水性聚氨酯乳液的综合性能较好,其耐水性、耐热性、拉伸强度等性能指标均有提高,吸水率由改性前的11.53%降至3.91%,拉伸强度由改性前的23.42 MPa升至55.18 MPa,玻璃化转变温度Tg由改性前的-7.23 ℃上升至25.31 ℃,并采用傅里叶红外光谱、差示扫描量热仪等分析手段,对IBOMA改性水性聚氨酯的性能进行了表征。 相似文献
7.
研究以二羟甲基丁酸(DMBA)、异佛尔酮二异氰酸酯(IPDI)、聚氧化丙烯二醇(PPG-220)等为主要原料,采用预聚体法合成无溶剂型水性聚氨酯树脂,与DMPA基合成的WPU进行了对比.探讨R值、扩链剂种类、扩链剂用量对PU乳液、涂膜性能的影响并对合成工艺进行了研究,且对产品进行DSC热力学分析和红外谱图的表征,胶膜的ATR红外光谱表现为水性聚氨酯典型的红外特征. 相似文献
8.
9.
多重改性水性聚氨酯乳液的合成及性能 总被引:6,自引:2,他引:6
以蓖麻油、三羟甲基丙烷为交联剂,采用环氧树脂和丙烯酸酯为改性剂合成多重改性水性聚氨酯乳液.用傅立叶变换红外光谱、凝胶渗透色谱、粒度分析仪等对合成的改性聚氨酯乳液的结构和性能进行了表征.同时采用该乳液配胶制成了汽车内饰用的胶粘剂,当内饰材料聚氨酯和聚氯乙烯之间、木材和皮革之间粘接时,剥离强度测试时材料均遭破坏;当聚氨酯和真皮之间、橡胶和真皮之间粘接时,剥离强度分别为1.66kN/m和1.41kN/m,其性能优于未改性的聚氨酯(PU)乳液及国外同类产品. 相似文献
10.
采用甲苯二异氰酸酯、聚丙二醇、二羟甲基丙酸和丙烯酸羟乙酯合成了水性紫外光固化聚氨酯丙烯酸酯树脂,并用高支化聚酯对其进行了改性,研究分析了影响树脂水溶性和感光性的各种因素。结果表明,树脂亲水性与亲水基团含量呈正比;以819-DW为光引发剂,质量分数为3%时,涂膜光固化速度最佳;经高支化聚酯改性后的涂膜的综合性能有了较大的提高,质量分数为10%时,涂膜的综合性能最佳。 相似文献
11.
采用甲苯二异氰酸酯(TDI)、聚酯多元醇和二羟甲基丙酸(DMPA)为主要原料,经分步预聚后在水中自乳化合成了阴离子型水性聚氨酯.探讨了合成工艺路线,研究了NCO/OH比例、DMPA含量等对水性聚氨酯乳液性能的影响.结果表明:当NCO/OH值选择在1.5~2.3,DMPA用量为3%~8%时,乳液性能最佳. 相似文献
12.
阳离子型水性聚氨酯的研制 总被引:1,自引:0,他引:1
以聚乙二醇(PEG)、甲苯二异氰酸酯(TDI)、N-甲基二乙醇胺(MDEA)为主要原料,用自乳化法合成了阳离子型水性聚氨酯;探讨了合成反应工艺条件.研究表明,较佳的合成工艺条件为:制备预聚物时n(NCO)/n(OH)比值为3:1;以N—甲基二乙醇胺为扩链剂,采用“饥饿加料”方式,其用量为预聚物质量分数的5.0%~6.0%;预聚物合成反应温度为60℃,反应时间3 h;扩链反应的反应温度40℃,反应时间5 h;中和度为80%~100%.在此工艺条件下,合成的阳离子型水性聚氨酯具有良好的稳定性能. 相似文献
13.
本文主要论述用6/66/610三元共聚尼龙树脂改性环氧胶粘剂的改性原理、胶粘剂的原料配方、配制方法、涂胶工艺及固化条件、基本性能数据等.此胶粘剂具有高强度、高韧性.可以在低温(-60℃) 、室温、高温(120℃)长期工作.适于制造铝质蜂窝结构及要求剥离强度和耐冲击性能好的金属与金属的胶接. 相似文献
14.
以R/S PLUS黏度计研究了水性环氧树脂/水性胺加聚过程的流变性能,讨论了水性胺(HF或HG)、温度和时间对流变行为的影响.结果表明,HF和HG能有效地与水性环氧树脂产生加聚反应.升高温度,初期30 min的黏度是先降而后快速上升;延长时间黏度先升而后趋于一平衡值.水性环氧树脂、水性胺及加聚产物都是非牛顿流体,其流变行为随温度、时间和剪切速率的变化而变化,且符合Herschel Bulkley和Casson流变模型.并用动态力学热分析和热重分析研究了固化膜的热稳定性. 相似文献
15.
采用正交设计的实验方法,以双酚A型环氧树脂(E-44)为基础树脂,丙烯酸单体(AA)为改性剂,合成了溶剂型环氧丙烯酸树脂(EA),探讨合成工艺条件如反应温度、反应时间、催化剂和阻聚剂的加入量对丙烯酸单体转化率的影响。结果表明,当反应温度95 ℃,反应时间4 h,催化剂和阻聚剂的加入量与E-44量之比分别为1.0%和0.075%(wt%)时,丙烯酸单体具有较高的转化率。在此基础上,通过顺丁烯二酸酐(MA) 与环氧丙烯酸树脂(EA)上的羟基反应,在EA上引入了羧基亲水性基团,制备了水溶性环氧丙烯酸树脂(EB)。采用傅立叶-红外光谱(FT-IR)分别对中间产物EA和目的产物EB进行了结构表征,进一步证实了AA与E-44开环酯化反应生成了EA,以及MA与EA上羟基发生酯化反应生成了EB。 相似文献
16.
17.
采用傅立叶变换红外光谱仪研究了水性环氧树脂涂膜的固化过程,得到不同固化温度下交联固化程度随时问的变化规律:水性环氧涂膜在固化前期属于动力学控制阶段,固化速率较高,固化程度随时间增加较快;固化后期属于扩散控制阶段,固化反应程度随时间的延长而增加缓慢.结果表明:此水性环氧树脂涂料体系的固化反应表观活化能为56.082 kJ/mol,室温下具有较快的固化反应速度. 相似文献
18.
以异佛尔酮二异氰酸酯(IPDI),聚醚二元醇(N210),二羟甲基丙酸(DMPA),三羟甲基丙烷(TMP)为主要原料制备端-NCO聚氨酯预聚体,用二乙醇胺(DEA)封端引入羟基,合成了双组分水性聚氨酯的聚氨酯多元醇分散体组分.研究发现:DMPA,TMP的用量、羟基含量及分散体与固化剂组分的配比等因素显著影响分散体及涂膜... 相似文献