首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
镁基储氢材料具有储氢量高、镁资源丰富以及成本低廉等优点,被认为是极具应用前景的一类固态储氢材料.然而其吸放氢焓值高且氢在镁氢化物中扩散系数低,导致吸放氢温度过高、吸放氢速度缓慢,限制了其在氢能领域的应用.近年来,大量研究工作聚焦于镁基储氢材料的热/动力学改性,目前已经取得了大量的成果.本文针对国内外镁基储氢材料的研究现状,归纳了镁基储氢材料的改性方法,重点阐述了合金化、催化剂添加、纳米化、氢化物复合对镁基储氢材料吸放氢热/动力学性能、微观结构、物相变化、吸放氢机理的影响.最后,对该领域的研究成果进行了总结,并展望了未来的发展方向.  相似文献   

2.
孙艳  周理  苏伟  周亚平 《科学通报》2007,52(3):361-365
由于氢对可再生能源与解决温室效应问题的重要性, 储氢研究备受关注. 吸附是压缩气体的有效途径, 因此被用于开发储氢技术. 但在有工程意义的温度下氢是超临界温度气体, 其吸附机理与临界温度以下气体不同. 本文阐释了为什么在临界温度以上的吸附是单分子层的及其对储氢研究的影响. 尽管有赞成和反对的不同意见, 理解超临界温度吸附机理对于储氢材料研究是至关重要的, 因为该机理表明, 无论是何种新奇材料, 只要其储氢原理基于吸附, 一定不能满足车载储氢的实际需求.  相似文献   

3.
高容量储氢材料的研究进展*   总被引:2,自引:0,他引:2       下载免费PDF全文
安全、高效、经济的氢储存技术是氢能大规模应用的关键。相对于高压气态储氢和低温液化储氢,通过氢与材料间的相互作用形成固溶体或氢化物的固态氢储存由于其好的安全性和高的能量密度,被认为是最有发展前景的一种氢储存技术。为了满足车载氢源系统重量储氢密度大于5%的要求,目前发展中的高容量储氢材料主要包括金属铝氢化物、硼氢化物、氮氢化物和氨基硼烷化合物。作者简要综述了最近几年这些高容量储氢材料的研究进展,重点关注材料的储氢容量、吸放氢反应热力学、吸放氢反应动力学和吸放氢机理以及成分调变、催化改性和尺寸效应对材料储氢性能的影响。  相似文献   

4.
任建伟  廖世军  刘军民 《科学通报》2007,52(14):1620-1624
采用浸渍-还原法制备了LaNi4.8Sn0.2/CNTs和NdNi4.8Sn0.2/CNTs两种复合材料, 在室温、1.0 MPa氢压下, 分别可获得2.96%和2.88% (质量分数)的储氢量. 在相同条件下, 该储氢值为MNi4.8Sn0.2(M = La, Nd)合金粒子储氢量的3倍, 此结果可归因于合金粒子与纳米碳管(CNTs)之间的协同作用. XRD和TEM测试结果表明, 合金粒子粒径在30 nm左右且较均匀地分布在CNTs载体上. 储放氢实验显示, 两种复合材料有较好的储氢稳定性, 经历100个吸放氢周期后, 其储氢降低率小于6%; 同时, 材料的晶体结构没有发现明显的变化.  相似文献   

5.
任建伟  廖世军  刘军民 《科学通报》2006,51(21):2481-2484
采用新型的溶胶法, 制得了一种PdNi18合金纳米粒子, 将这种纳米粒子负载到经过特殊预处理的多壁纳米碳管上, 得到了一类具有良好储氢性能的PdNi18/MWCNTs复合材料. X射线衍射(XRD)和透射电子显微镜(TEM)测试表明, PdNi18合金纳米粒子均匀地分布在载体表面上, 粒径约为3 nm. 储氢结果显示, 该复合材料在室温、1.5 MPa条件下储氢量可高达2.3%(质量分数).  相似文献   

6.
随着能源危机和环境问题的日益加剧,迫切需要寻求一种高效的可再生能源,而氢能被认为是最具前景的能量载体之一。氢燃料电池是氢能利用的最主要形式,其中车载储氢需要更轻便、紧凑和经济的体系来取代高压气体储氢装置。作为最具潜力的固体储氢体系之一,镁基储氢材料具有诸多优点,但阻碍其实际应用的瓶颈问题同样难以克服。文章通过介绍镁基储氢材料的吸放氢机理,阐述了热力学和动力学性能对其实际应用的制约及成因,归纳了当前的研究方法和进展,包括主要的组织调控和材料改性方法,并对镁基储氢的发展前景进行了展望。  相似文献   

7.
随着能源危机和环境问题的日益加剧,迫切需要寻求一种高效的可再生能源,而氢能被认为是最具前景的能量载体之一。氢燃料电池是氢能利用的最主要形式,其中车载储氢需要更轻便、紧凑和经济的体系来取代高压气体储氢装置。作为最具潜力的固体储氢体系之一,镁基储氢材料具有诸多优点,但阻碍其实际应用的瓶颈问题同样难以克服。文章通过介绍镁基储氢材料的吸放氢机理,阐述了热力学和动力学性能对其实际应用的制约及成因,归纳了当前的研究方法和进展,包括主要的组织调控和材料改性方法,并对镁基储氢的发展前景进行了展望。  相似文献   

8.
赵延兴  公茂琼  周远 《科学通报》2019,64(25):2654-2660
如何安全、高效、经济地储存氢气已成为氢能利用进一步发展的瓶颈.传统储氢手段,如室温高压储氢、液化储氢、金属氢化物储氢等存在或储氢密度低、或液化功率高、或需高温加热再生释氢等问题.为此,本文提出一种在氢气临界压力之上的低温高压储氢方式,可在压力不必太高,温度不必太低的情况下实现储氢释氢过程.分析发现,综合储氢密度及储氢能耗, 3种物理储氢方法优劣为:低温高压储氢室温70 MPa储氢液化储氢;在储氢压力10 MPa以上存在单位储氢能耗下的储氢密度极大值.本文推荐低温高压储氢参数为:50 MPa,100 K;45 MPa,100 K; 40 MPa, 90 K; 35 MPa, 80 K; 30 MPa, 70 K,其储氢密度在62.3~65.3 kg/m~3之间.  相似文献   

9.
黄磊 《科学通报》1994,39(15):1365-1365
LaNi_5是一种研究最活跃的储氢材料,同时LaNi_5薄膜在氢分离、氢电池和氢探测器等领域内呈现出较有希望的应用前景.国外对此已经开始广泛的研究,而国内对储氢薄膜的研究尚未起步.  相似文献   

10.
世界范围内能源危机,气候和环境问题日渐凸显,亟需寻找合适的可替代能源.在众多新型能源中,氢能作为一种储量丰富、燃烧无污染、能量密度高的绿色能源,可以为燃料电池提供高效稳定的动力来源而引起广泛关注,如何将其安全高效的储存是氢气应用于车载燃料电池的技术瓶颈.硼氮氢类化合物由于具有储氢密度高、释氢条件温和等优点成为学术界关注热点.氨硼烷(ammonia borane,AB)为代表性化合物,其含氢量高(19.6%,质量百分比)、热稳定性适中、释氢温度低,被认为是最具潜力的新型储氢材料之一.氨硼烷中的一个正氢被金属原子取代后形成的金属氨硼烷(metal amidoborane,MAB),可以有效抑制硼吖嗪的生成.研究者们对这类储氢化合物进行了大量的理论和实验研究,改进其性能,降低释氢温度,缩短诱导期,减少挥发性有害气体硼吖嗪、氨气、乙硼烷的生成.本文从氨硼烷结构中特殊的双氢键入手,总结了氨硼烷的合成方法,并详细综述了添加剂对氨硼烷和金属氨硼烷释氢性能的影响,介绍了氨硼烷的再生以及在其他方面的研究进展,最后展望了氨硼烷的研究前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号