首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
为了解决车辆目标检测中准确率低的问题,提出了一种基于改进YOLOv5算法的车辆目标检测.改进后的YOLOv5算法主要是在原来的基础上通过K-means聚类的方法对数据集中的目标边框进行重新聚类、并将CIoU损失函数和DIoU_nms应用于YOLOv5算法来提高目标识别效果.改进后的YOLOv5算法,目标检测mAP达到了85.8%,比改进前的YOLOv5算法提升了1.3%.  相似文献   

2.
针对公路上高速行驶的车辆检测常常存在错检、漏检的问题,对YOLOv4算法进行改进优化.首先,将CSPDarknet53-tiny作为主干特征提取网络,并对网络中的ResBolck_body模块中的残差边与GhostModule模块结合代替原始特征网络CSPDarknet53,从而简化网络结构,同时提高其检测精度;然后,将原算法中的SPPNet模块结构替换为ASPPNet,增大网络感受野,降低参数计算量,使模型能够在保持精准度的同时更加轻量化;最后,将注意力机制模块SENet结构嵌入特征金字塔PANet的两个不同位置,使其可对不同重要程度的特征进行相应处理.在BDD100K数据集实验中,原YOLOv4算法训练后得到的模型的平均精度(AP)为88.27%,改进优化后的YOLOv4模型AP为90.96%,改进后的YOLOv4算法相比原算法AP提高了2.69%.在实际真实场景数据集实验中,改进优化后的YOLOv4算法比原算法AP提高了3.31%.实验结果表明,本文提出的方法可以有效提高YOLOv4算法对车辆目标检测的精度.  相似文献   

3.
扣件的健康状态是保障轨道车辆正常运行的关键。当前人工检测轨道扣件效率较低,具有缺陷性。针对这一问题,提出了基于改进YOLOv4算法的轨道扣件与检测。在YOLOv4网络中,利用CSPDarknet53第二个残差块嵌入conv卷积结构与YOLO头部结构,增加输出端,并进行网络中的上采样与下采样。与YOLOv4原算法模型相比,提升了准确率与检出率。将使用改进YOLOv4的方法,实现对有砟轨道与无砟轨道上扣件的状态检测。试验结果表明:基于改进YOLOv4算法检出率和准确率比原YOLOv4算法分别提升4.65%和4.88%,并且YOLOv4模型体积与其他模型相比更小,适用于轨道扣件检测。  相似文献   

4.
针对无人机平台由于内存、算力有限而导致检测模型部署困难、检测速度降低的问题,提出了一种基于YOLOv4的改进模型.首先,为了减小模型内存占用、节省计算资源,根据目标尺寸特点,对YOLOv4原模型的预测层进行了改进,将三尺度检测模型改进为双尺度检测模型;其次,对双尺度检测模型进行正常训练,然后将其BN层的缩放因子进行稀疏...  相似文献   

5.
6.
针对检测模型参数量大,难以在嵌入式设备上部署等问题,设计了一种改进的YOLOv4目标检测算法.该算法使用轻量化的MobileNetV1替换CSPDarketnet53主干特征提取网络,并将后续网络中的3×3卷积替换为深度可分离卷积,极大地减少了模型的参数量;在检测头加入NAM注意力模块,增强网络对细节信息的提取能力;采用SDIoU Loss作为边框回归损失,在加快收敛速度的同时提高了检测精度.实验表明:与YOLOv4-CSPDarknet53相比,改进算法在PASCAL VOC07+12数据集上训练出来的模型大小为47.19 M,约为原来的五分之一,FPS提升了40(f/s),mAP提升了2.4%.与YOLOv4-Tiny、YOLOv5s、YOLOv7等目标检测算法相比,具有兼顾检测速度与精度的特点.  相似文献   

7.
针对输电线路异物检测识别精度低的问题,提出基于改进YOLOv4(you only look once的第4个版本)的输电线路异物检测算法.首先,对YOLOv4的特征金字塔池化模块进行改进,以在背景干扰的情况下保留更多目标信息、减少最大池化导致的目标信息丢失;其次,对原有的BCE(binary cross entropy)损失函数进行优化,得到GBCE(gradient-boosting binary cross entropy)损失函数,以提升算法区分相似目标的能力;最后,在数据集上使用多种算法进行对比实验.实验结果表明:相对于其他3种算法,基于改进YOLOv4的输电线路异物检测算法具有更好的综合性能.  相似文献   

8.
针对YOLOv3(you only look once version 3)对中小目标检测效果不理想的问题,提出改进算法DX-YOLO(densely ResneXt with YOLOv3).首先对YOLOv3的特征提取网络Darknet-53进行改进,使用ResneXt残差模块替换原有残差模块,优化了卷积网络结构;...  相似文献   

9.
针对复杂交通场景下密集小目标居多、目标尺寸差异大、目标间遮挡严重的问题,提出了一种基于YOLOv4框架的复杂交通场景下的目标检测算法。首先,构造多尺度特征融合提取模块作为主干网络特征提取模块,充分提取不同尺度目标特征信息,同时引入轻量化Ghost模块对主干网络特征进行维度调整;其次,将卷积模块与自注意力机制融合,构造倒残差自注意力模块应用到主干网络深层,深层网络在充分提取局部特征信息基础上获得了全局感知;然后,构造轻量级混合注意力模块,抑制背景噪声,增强密集小目标检测能力;最后,在Udacity数据集上进行实验,检测精度达到了84.41%,相比较YOLOv4, mAP(mean average precision)提高了3.07%,对1 920×1 200分辨率图像的检测FPS(frames per second)可达到49,提高了22.5%,精度提升的前提下实现了较好的实时性,更适用于复杂交通场景下的目标检测任务。  相似文献   

10.
针对声纳图像中小目标检测识别率低、虚警率高的问题, 提出一种改进的 YOLOv3 算法. 改进的 YOLOv3 网络在原始 YOLOv3 的基础上进行优化, 改变网络的层级连接, 融合更浅层的特征与深层特征, 形成新的更大尺度的检测层, 提高了网络对水下小目标检测的能力; 同时, 使用线性缩放的 $K$-means 聚类算法优化计算先验框个数和宽高比, 提高了先验框与 ground truth box 之间的匹配度, 较原始 YOLOv3 算法均值平均精度提高了 7%. 实验结果表明, 所提出的改进 YOLOv3 算法能够有效分类与识别小目标且有更高的准确率和更低的虚警率, 同时保持了原始 YOLOv3 算法的实时性.  相似文献   

11.
针对传统的行人车辆目标检测算法因参数量大和计算复杂度高而在现实应用中受限的问题,基于轻量化深度学习网络提出改进的YOLOv5s行人车辆目标检测算法.首先,选用ghost模块替换主干网络中部分卷积模块进行模型剪枝,同时向网络中引入注意力机制,使得网络在减少模型参数量和提升模型性能两方面实现更好的平衡;其次,采用边界框的宽高差值计算代替边界框回归损失函数中宽高比距离的计算,加速网络的收敛;最后,通过构建真实交通场景下的行人车辆目标检测数据集检验模型的准确性和实时性.实验结果表明,在保持原算法较高精度的同时,改进后YOLOv5s算法的参数量下降28%,模型大小降低27%,节省了硬件成本,拓宽了YOLOv5s算法的应用场景.  相似文献   

12.
针对密集场景下行人检测的目标重叠和尺寸偏小等问题,提出了基于改进YOLOv5的拥挤行人检测算法。在主干网络中嵌入坐标注意力机制,提高模型对目标的精准定位能力;在原算法三尺度检测的基础上增加浅层检测尺度,增强小尺寸目标的检测效果;将部分普通卷积替换为深度可分离卷积,在不影响模型精度的前提下减少模型的计算量和参数量;优化边界框回归损失函数,提升模型精度和加快收敛速度。实验结果表明,与原始的YOLOv5算法相比,改进后YOLOv5算法的平均精度均值提升了7.4个百分点,检测速度达到了56.1帧/s,可以满足密集场景下拥挤行人的实时检测需求。  相似文献   

13.
针对YOLOv3在道路目标检测中漏检率高和检测精度低的问题,提出一种基于改进YOLOv3的道路目标检测方法 。通过将原有YOLOv3的3个特征尺度增至4个,从而提升了对于小目标的检测准确率。使用CIoU损失函数提高模型的准确性,利用K-Means++聚类算法对道路目标重新聚类,得到新的候选框。在BDD100K数据集上的验证结果 表明,改进的YOLOv3算法在降低漏检率和提高检测精度方面效果较好。  相似文献   

14.
实时的交通场景目标检测是实现电子监控、自动驾驶等功能的先决条件.针对现有的目标检测算法检测效率不高,以及大多数轻量化目标检测算法模型精度较低,容易误检、漏检目标的问题,本文通过改进YOLOv5目标检测算法来进行模型训练,再使用伪标签策略对训练过程进行优化,然后在KITTI交通目标数据集上将标签合并为3类,对训练出的模型进行测试.实验结果表明,改进的YOLOv5最终模型在该所有类别上的mAP达到了92.5%,对比原YOLOv5训练的模型提高了3%.最后将训练的模型部署到Jetson Nano嵌入式平台上进行推理测试,并通过TensorRT加速推理,测得平均每帧图像的推理时间为77ms,可以实现实时检测的目标.  相似文献   

15.
针对目标检测YOLOv4算法在肺结节检测中存在的小目标漏检和肺结节位置失真等问题,设计了一种改进的YOLOv4肺结节检测算法.在原始YOLOv4网络的基础上,将特征融合网络的上采样过程替换为双线性插值法,并采用张量堆叠的方法使顶层的语义信息与底层的位置信息形成更高通道的特征张量.实验结果表明,与原始的YOLOv4算法相比,改进的YOLOv4算法在公开数据集LUAN16上的平均精确度与预测速度分别提高了4.54%和28.1%,可视化结节位置表达更精准.  相似文献   

16.
基于原有YOLOv3模型占用存储空间较大,所需初始化数据集样本和参数较多的问题,本文提出了一种基于YOLOv3的深度学习目标检测压缩模型YOLOv3-ADS.该模型使用拼接、叠加等方法对较少的有代表性的初始数据集进行数据增强,引入了DIoU损失函数,提升了目标检测的准确度.最后,通过稀疏训练和剪枝率阈值设置实现了YOL...  相似文献   

17.
由于高分辨率遥感图像存在目标排列密集、尺寸差别大等情况,传统算法难以准确地对其进行目标检测。在YOLOv3算法的基础上,提出一种改进的高分辨率遥感图像目标检测算法(remote sensing-YOLO,RS-YOLO)。利用K-means聚类算法对数据集进行聚类,重新设计适合遥感图像的先验框; 引入高斯模型计算预测框的不确定度,以提高网络对预测框坐标的准确度; 使用弱化的非极大值抑制算法(soft non-aximum suppression,Soft-NMS)对预测框进行处理,增强算法对密集排列目标的检测能力。实验结果表明,改进后的算法能够对高分辨率遥感图像进行有效的目标检测,以NWPU VHR-10数据集为例,RS-YOLO的平均检测精度达到了87.97%。  相似文献   

18.
蒲玲玲  杨柳 《科学技术与工程》2023,23(28):12159-12167
多车辆目标跟踪时间主要花费在车辆检测模块和对每个车辆表观特征提取模块,一般情况下,车辆检测和车辆表观特征提取是在不同的神经网络中进行的,且一张图中的车辆目标越多,对车辆表观特征提取耗费时间的也越多,推理时间也相应变长。针对这一问题,基于经典的Tracking-By-Detection模式,提出一种改进的YOLO模型:在YOLO网络中添加ReID特征识别模块,使YOLO在输出目标位置信息的同时输出目标特征信息,以提高算法的跟踪速度。针对车辆间彼此覆盖的情况,提出一种基于动态IOU阈值的非极大抑制算法,以提高算法的跟踪精度。最后将YOLO输出的信息进行数据匹配,从而实现多目标跟踪。在UA-DETRAC数据集上验证改进模型的有效性,实验结果表明,将YOLOv5网络进行改进后运用在目标跟踪算法中,相对于经典的YOLO+DeepSORT跟踪模型,在车辆密集的情景下平均推理时间减少了17%;在改进后的网络上添加动态IOU阈值非极大抑制,跟踪精度提高了3.9个百分点。改进后的模型有较好的实时性与跟踪准确率。  相似文献   

19.
为提高自动驾驶中的道路目标检测精度,设计了一种基于YOLOv5的道路目标检测模型。该模型在YOLOv5s的网络模型基础上,将原始的初始锚框聚类算法改为K-means++算法来减小随机带来的聚类误差;并在Backbone中SPP模块之前引入SENet注意力机制,以增强道路目标重要特征并抑制一般特征,达到提高检测网络对道路目标的检测能力。在VOC2012改进数据集上训练、测试,基于改进的YOLOv5s的模型比原始YOLOv5s模型平均准确精度提高了2.4%。实验结果表明,改进的YOLOv5s模型能较好地满足道路目标检测的精度要求。  相似文献   

20.
目前实地部署的商用采矿无人系统大都采用激光雷达和毫米波雷达作为感知传感器,难以准确识别障碍物的类型,尤其是较远处障碍物,不利于正确决策,从而影响无人作业的安全和整体效率.针对这些问题,本文采集了不同场景的矿山数据,并提出了一种基于YOLOv5S的图像目标检测算法.该算法主要进行了三方面改进:首先,使用不同的填充策略和空间注意模块优化采样方法,提高了模型的采样能力;其次,解耦Head预测分支,让每个分支专注自己的任务;最后,优化损失函数,耦合定位和分类,实现定位和分类任务的联合优化.试验表明,三种方法在保持实时性的前提下,可将YOLOv5S的平均精度(Average Precesion, AP)从49.9%提高至58.9%,实现白天、夜间场景下不同尺度的障碍物识别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号