首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为了系统地研究10CrMoAl钢的耐腐蚀性能,对其周浸试验各周期试样进行了腐蚀速率分析、SEM分析、XRD分析及电化学分析.结果表明:腐蚀速率最快的阶段是72~168 h腐蚀阶段,其次是0~72 h腐蚀阶段,最慢的是168~240 h腐蚀阶段.经过168 h腐蚀后,锈层厚度平均为80 μm,是经过72 h腐蚀后的试样锈层厚度的近2倍.经过240 h的腐蚀后,锈层仍然维持在80 μm左右,却出现了50 μm的过渡层.经过168 h和240 h腐蚀所形成的锈层几乎完全阻止了γ-FeOOH和α-FeOOH等稳定产物的形成,从而有效地阻碍了基体的继续腐蚀.此外,锈层中Cr、Mo和Al的富集,也对阻碍腐蚀的进行起到一定的作用.  相似文献   

2.
为提高套管钢的耐腐蚀性能,在950℃对N80套管钢分别进行了2 h、4 h及6 h的包埋渗铝工艺处理.不同包埋时间下所得渗层的物相组成、微观形貌、显微硬度和电化学性能不同.测试结果表明:渗铝时间为2 h时,所得渗铝层厚度为150μm,渗铝时间延长到4 h和6 h后,渗铝层厚度增大到300μm;渗铝时间为2 h、4 h时所得N80套管钢的渗铝层主要由FeAl金属间化合物组成,当渗铝时间为6 h时,渗铝层中开始出现了高铝Fe2Al5相;不同时间包埋渗铝处理后的N80套管钢试样表面硬度高于基体,自腐蚀电流密度显著下降.由此得出结论:高铝相铁铝化合物随包埋时间的延长开始出现;渗铝层厚度随包埋时间的延长有所增加,当包埋时间超过4 h后,包埋时间对渗铝层致密度的提高作用较厚度增加更为显著;延长包埋时间可以显著提高渗铝层的硬度,但过长的包埋时间会同时造成基体硬度严重地下降;包埋时间对腐蚀性能的影响作用不明显.  相似文献   

3.
采用失重法研究WHT1300HF高强钢在中性盐雾环境下的耐蚀性,并结合XRD和SEM分析其腐蚀产物和腐蚀层形貌特征.结果表明:随着腐蚀时间的增加,腐蚀速率先增大后减小,在48h时达到了最大腐蚀速率,其中,铁素体和珠光体组织试样的腐蚀速率为4.016 5g/(m~2·h),马氏体组织试样的为3.436 9g/(m~2·h).WHT1300HF高强钢的腐蚀层形貌中出现了大量的棉球状颗粒和少量的板状颗粒以及裂纹等;腐蚀时间达到96h时,试样表面发生了严重的全面腐蚀,最终腐蚀产物主要由α-FeOOH、γ-FeOOH和Fe_3O_4组成,通过失重曲线和腐蚀速率曲线可以得出,铁素体和珠光体组织试样的失重量和腐蚀速率都比马氏体组织的略高.  相似文献   

4.
渗铝钢在硫化氢盐水体系中的腐蚀研究   总被引:1,自引:0,他引:1  
以热浸镀方法制备了渗铝钢.通过静态腐蚀失重实验,极化曲线测量,交流阻抗图谱测试以及电子探针微观分析对渗铝钢在H2S-NaCl-H2O体系中的腐蚀行为进行了研究,并对腐蚀机理进行了一些探索.实验结果表明由于表面氧化膜,富铝层和中间合金化层的存在,使得渗铝钢在H2S-NaCl-H2O体系中的平均腐蚀速率比碳钢低两到三个数量级;体系中存在的Cl-对渗铝钢表面氧化膜有破坏作用,易诱发点蚀.在渗铝钢合金化层中越远离碳钢基体的中间相铝含量越高,对H2S的抗蚀性越好.  相似文献   

5.
采用异步轧制方法制备铜/铝复合板,用电子万能试样机、扫描电子显微镜(SEM)及能谱仪(EDS)等分析测试手段,研究扩散退火对于铜/铝复合板结合强度、剥离裂纹位置及剥离断口化学成分的影响.研究发现,扩散退火使复合板结合强度降低,扩散层厚度随退火温度的提高而增大.复合板经350℃保温2h后,在铜/铝界面形成厚7.31μm的扩散层,经500℃保温2h后,形成厚15.53μm扩散层.退火态铜/铝复合板剥离裂纹位于靠近扩散层中间的富铝层,剥离断裂处的金属间化合物为CuAl和CuAl2.退火时形成的脆性金属间化合物以及轧制过程中形成的裂纹及未结合区是造成结合强度降低的主要原因.铜/铝轧制复合板宜采用低于350℃温度进行退火.  相似文献   

6.
采用Gleeble-1500D热模拟试验机制备了3种不同轧制工艺下的Cu-P-Cr-Ni-Mo-Nb耐候钢试样,其晶粒尺寸分别为11.9μm,9.2μm和6.8μm。使用Fl-65干湿周期浸润腐蚀试验机对裸钢进行72 h实验室周浸加速腐蚀试验;试验钢锈层与基体结合性较好;采用腐蚀失重法计算腐蚀速率。结果表明晶粒尺寸对试验钢耐大气腐蚀性能影响不明显。  相似文献   

7.
采用极化曲线法和交流阻抗法研究了X70钢在含0.5g/L的Na2SO4、Na2CO3、NaCl模拟大气腐蚀水中的电化学行为.结果表明:随着浸泡时间的延长,X70钢腐蚀速率逐渐降低;液膜厚度在1000—800μm时,阴极极限扩散电流变化不大,液膜厚度小于800μm时,阴极极限扩散电流剧增.随着液膜厚度减薄,X70钢腐蚀速率呈增大趋势.  相似文献   

8.
马家柚是江西省上饶市地方特色柚树。为了掌握马家柚叶片光合特性,利用Li-6400xt便携式光合仪对6年生马家柚的光合特性进行了系统研究。结果表明:马家柚叶片光合日变化为“双峰型”,具有“午休”现象,光合速率最大值出现在上午10:00时,光合速率最大值在4.4~7.7μmolCO2/(m2·s)之间;马家柚叶片光补偿点在35.1~99.7μmol/(m2·s)之间,光饱和点在1 224.6~1 809.2μmol/(m2·s)之间;马家柚叶片光合速率的在CO2浓度为1 500μmol/mol时达到最高,此时马家柚叶片光合速率在6.9~26.1μmolCO2/(m2·s)之间;马家柚光响应曲线和CO2响应曲线与其生长规律基本一致,最大光合速率随生长期不同呈先上升后降低的趋势。  相似文献   

9.
对20CrMnTi钢进行了520℃不同气氛等离子体渗氮处理。经氨氢和氨气离子渗氮8h后,增重分别为1.11mg/cm2和1.44mg/cm2,表面硬度分别为851.0HV0.05和835.0HV0.05。渗氮层由外层的“化合物层”和里层的“扩散层”组成。经氨氢和氨气离子渗氮后,化合物层的厚度分别为8~9μm和12μm。氨气渗氮8h后,改性层厚度最大,为350μm。氨氢混合气氛离子渗氮4h后的改性层为单一的γ’-Fe4N相。氨氢混合气氛渗氮8h和氨气渗氮4h和8h,改性层均由γ’-Fe4N和ε-Fe3N两相组成。与氨氢混合气氛渗氮相比,氨气渗氮层的XRD衍射峰强度显著下降,半高宽增加,显微组织相对细化。  相似文献   

10.
采用交流阻抗法和极化曲线法研究了X70钢在NaCl薄层液膜下的电化学行为.研究结果表明:Cl^-浓度的增大,促进了X70钢在溶液中的阳极反应,降低了电荷传递电阻和自腐蚀电位,腐蚀速率增大,Cl^-浓度大于0.20mol/L时,X70钢腐蚀速率反而降低.在0.20mol/L NaCl薄层液膜下,液膜厚度在1000—120μm时,阴极极限扩散电流变化不大,液膜厚度小于120μm,阴极极限扩散电流剧增;随着液膜厚度减薄,X70钢的腐蚀速率先增大后降低.  相似文献   

11.
为了探索在含Cl-环境中10CrMoAl钢的耐腐蚀机制,对10CrMoAl钢进行不同周期(72、168和240 h)的盐雾腐蚀试验,进而对其腐蚀结果进行对比分析,并对试样进行腐蚀速率分析、场发射扫描电子显微镜(FESEM)分析、能谱分析、X线衍射(XRD)分析及电化学阻抗谱分析。结果表明:随着腐蚀时间的延长,腐蚀速率逐渐降低。经过72、168和240 h腐蚀后,10CrMoAl钢的腐蚀速率分别为1.512、1.254和1.232 mm/a;当锈层厚度最大时,Cr和Mo在锈层内富集程度也达到最大,而且伴随着锈层的腐蚀脱落,Cr和Mo又在基体与锈层交界处逐渐富集,有效地阻碍了基体的腐蚀。此外,锈层中FeCr_2O_4的出现导致了Fe_3O_4逐渐消失和γ-Fe_2O_3相对量逐渐增加。锈层中FeCr_2O_4的出现明显改变了腐蚀产物的形成过程。  相似文献   

12.
为了研究14Cr12Ni2WMoVNb钢QPQ(淬火-抛光-淬火)处理后的氧化膜对渗层室温摩擦磨损和腐蚀性能的影响,利用金相、X射线衍射分析、扫描电镜、能谱分析、划痕仪、摩擦磨损试验机和电化学工作站对试样进行了表征.结果表明:氧化膜对渗层室温摩擦学性能的影响与载荷大小有关.在摩擦时间均为4min情况下,载荷较小(50N)时,氧化膜可以降低摩擦系数和体积磨损率;载荷较大(100N)时,氧化膜被破坏无法降低体积磨损率.氧化膜可明显提高渗层的耐腐蚀性能.含氧化膜试样的极化曲线有明显的钝化区,点蚀电位为-13mV,去除氧化膜试样在盐雾腐蚀12h后表面有大范围的腐蚀区域,而含氧化膜试样盐雾腐蚀48h后才有大区域腐蚀发生.  相似文献   

13.
液膜下的CO_2腐蚀是湿天然气管道内腐蚀破坏的重要形式,对其腐蚀机制的认知还非常有限。自主设计、搭建一套可实现温湿度控制、液膜厚度表征与控制以及三电极电化学测试的试验装置,结合电化学阻抗谱、极化曲线等电化学测试,研究纯铁在不同CO_2分压环境、不同厚度均匀液膜中的CO_2腐蚀行为机制。结果表明:液膜下的CO_2腐蚀过程受阴极扩散控制,电极表面扩散层厚度小于1 000μm;液膜厚度小于1 000μm时,腐蚀速率整体随液膜厚度增大呈增大趋势,因受到CO_2溶解度与腐蚀产物膜的影响,腐蚀速率在液膜厚度为400μm时出现局部极值;液膜厚度小于400μm时,CO_2在液膜中的溶解度是制约腐蚀速率的重要因素;液膜厚度在400~1 000μm时,腐蚀产物膜成为影响腐蚀速率的主要因素;薄层液膜环境下增加CO_2分压既可提高腐蚀速率又可以促进腐蚀产物膜的生成。  相似文献   

14.
采用共混法与原位聚合法制备添加纳米二氧化硅恐龙化石保护材料.将制备恐龙化石保护材料与传统保护材料(硝基清漆)分别涂覆钢片,用3.5%氯化钠溶液浸泡腐蚀,测试腐蚀电位、腐蚀电流、交流阻抗和腐蚀速度;利用SPM和DSC测试保护材料分散性与热分解性.结果表明:共混法与原位聚合法制备保护材料腐蚀电流分别为3.481×10-7A/cm2、2.332×10-6A/cm2,硝基清漆腐蚀电流为4.181×10-6A/cm2,共混法制备保护材料腐蚀速度最小;三种保护材料失重腐蚀速率为1.18 g/(m2·h)、1.19 g/(m2·h)和1.29 g/(m2·h),共混法制备保护材料耐蚀性最好,交流阻抗谱测试结果与其一致;添加4%纳米SiO2制备水溶性保护材料时,共混法制备材料耐热性、分散性较原位聚合法好,两者涂膜附着力皆为1级.  相似文献   

15.
文章利用离散元二维颗粒流程序(PFC2D)建立铜基石墨复合材料和45#钢摩擦副数值模型,基于环-块滑动接触方式,研究摩擦过程中摩擦界面动态变化规律及石墨粒径和体积分数对复合材料摩擦磨损性能的影响。结果表明:复合材料和45#钢摩擦过程中,在摩擦表面逐渐形成石墨润滑层,使得摩擦副的接触由金属与金属接触逐渐转变为石墨与金属接触;随着时步数增加,材料摩擦系数整体下降并达到稳定;石墨粒径增加,摩擦系数增大,磨损量先减少后增多,石墨粒径为18μm时,磨损量最少为1.65×10-8 m3;石墨体积分数增多,材料摩擦系数降低,磨损量先减少后增多,石墨体积分数为12%时,磨损量最少为1.61×10-8 m3。  相似文献   

16.
渗铝是一种或多种金属原子渗入金属工件表层内的化学热处理工艺.最常用的是热浸--扩散渗铝和固体粉末包埋渗铝两种方法.我们所说到的渗铝工艺叫做"钢基热熔渗铝",就是将钢材及钢制品置入在一定温度下的熔盐液体中,使其钢基表面充分活化和净化后,迅速提出并置入熔融液态铝中,浸渍适当时间后,使其刚集体形成一定厚度的金属间化合物、致密均匀的铝层和三氧化二铝氧化膜.  相似文献   

17.
将6061铝合金进行超声喷丸处理,喷丸时间分别为0、90、180、270 s。对喷丸面进行表面粗糙度、显微维氏硬度、残余应力测量,采用标准中性盐雾腐蚀试验探究不同喷丸处理试样的抗腐蚀行为,分析粗糙度、硬度、残余应力对其抗腐蚀性能的综合影响。试验结果表明:随着喷丸处理时长由90 s变至270 s,铝合金表面粗糙度逐渐降低,硬度在距喷丸表面0~600μm之间有较为明显的提高,表面残余应力有显著提高,并且粗糙度增加会促进盐雾腐蚀,硬度与残余应力升高会抑制盐雾腐蚀,盐雾腐蚀结果表明,在喷丸处理时长由0s变至270 s的4个试样中喷丸90 s时的盐雾腐蚀速率最快,而喷丸270 s时的试样盐雾腐蚀速率最慢。  相似文献   

18.
为进一步增强酸化缓蚀剂在高温深井中的缓蚀效果,以氯甲基萘为季铵化中间体,与双曼尼希碱反应,合成得到一种双曼尼希碱季铵盐,通过单因素分析法优选复配分散剂和增效剂得到高温酸化缓蚀剂SJ-1,使用失重法和电化学法评价其缓蚀性能。研究结果表明,高温酸化缓蚀剂SJ-1在180℃下,加量仅为3%时,就能使N80钢片在20%盐酸和土酸中的腐蚀速率分别达到70.15 g/(m2·h)和65.32 g/(m2·h),均小于SY/T 5405—2019中的一级指标;高温酸化缓蚀剂SJ-1是以抑制阳极过程为主的混合控制型缓蚀剂;量子化学计算结果表明,以氯甲基萘为中间体合成的双曼尼希碱季铵盐缓蚀性能优于以氯化苄为中间体合成的。  相似文献   

19.
通过激光淬火/离子渗氮复合方法对H13钢进行表面改性处理,从而提高其表面的性能.利用X射线衍射技术、光学显微观察、扫描电子显微观察、能谱分析技术、显微硬度和纳米测试系统以及高频往复磨损试验,分别研究了离子渗氮、激光淬火、以及激光淬火与离子渗氮复合处理对H13钢改性层组织结构、力学性能、摩擦磨损性能的影响过程和影响机理.结果表明:复合处理工艺可以显著改善改性层的综合性能.和单一渗氮处理相比,复合处理改性层硬度和有效硬化层深度分别从1 180 HV和80μm提高至1 360 HV和550μm,摩擦系数和磨损率分别从0.68和5.78×10-8 mm3·N-1·m-1降低至0.59和1.35×10-8 mm3·N-1·m-1.试样的硬度和耐磨性显著增加,平均摩擦系数明显降低.  相似文献   

20.
影响铝合金微弧氧化成膜效率的因素分析   总被引:1,自引:0,他引:1  
为了解决目前微弧氧化技术中存在的高电能消耗及低处理效率问题,采用低能耗微弧氧化工艺在铝表面制备氧化物陶瓷膜层,测量并分析电解液成分和质量密度、工艺条件对成膜效率的影响,研究了影响铝合金微弧氧化成膜效率的因素和作用机理,提出了降低工艺能耗的技术途径.结果表明:通过改变添加剂成分和质量浓度、脉宽、峰值电压和处理时间等工艺参数可以有效提高陶瓷膜层沉积效率.在制备过程中平均电流密度均能控制在1 A/dm2以下,平均单位成膜效率为2.8~3.2 kW.h/(m2.μm),获得膜层厚度为25~30μm.所制备的氧化铝陶瓷层的相结构、厚度、粗糙度和硬度等参数与通常微弧氧化技术制备的陶瓷膜相似.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号