首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
多目标粒子群优化算法研究   总被引:1,自引:0,他引:1  
在过去的十多年,粒子群算法对多目标优化问题的应用研究取得了较大的进展.本文首先描述多目标粒子群优化算法(MOPSO)的基本流程,然后从算法设计与应用等方面回顾MOPSO的研究进展,最后对该算法未来的研究进行了分析和展望.  相似文献   

2.
提出了一种基于密度聚类的领导粒子选择策略的多目标粒子群优化算法。首先,将粒子进行分类;然后,对外部档案采用改进的循环拥挤距离排序,并将高斯变异引入到进化种群,在保持具有全局搜索能力的同时,也避免了陷入局部最优。对WFG系列测试函数的仿真结果表明,与经典多目标优化算法相比,本文算法在解的收敛性和多样性等方面有显著的提升。  相似文献   

3.
基于密集距离的多目标粒子群优化算法   总被引:3,自引:2,他引:1  
设计出基于密集距离的多目标粒子群优化算法(CMPSO),该算法根据密集距离大小按轮盘赌方式为每个粒子从外部档案选取全局最好位置并采用基于密集距离的方法对外部档案进行维护.将算法应用于3个复杂的测试实例,并与强度Pareto进化算法2等算法进行比较,计算结果表明CMPSO具有良好的连续优化能力.  相似文献   

4.
基于多目标粒子群优化算法的输电网规划   总被引:3,自引:0,他引:3  
输电网规划是一个离散型、非线性、多目标的混合整数规划问题,难于求解.提出一种多目标粒子群优化算法用来求解输电网规划问题.在输电网规划模型中考虑了建设投资费用、运行费用及网损费用等3方面的因素.多目标粒子群优化算法基于Pareto支配关系来更新粒子的个体极值,并采用了精英归档技术,粒子的全局极值由档案库中的非劣解提供.使用Matlab7.1对Garver-6节点系统进行仿真计算,结果表明:与传统的单目标遗传算法相比,多目标粒子群优化算法获得的规划方案总费用更低,该方法可以提高输电网规划的经济性水平.  相似文献   

5.
基于粒子群优化的多目标作业车间调度   总被引:2,自引:0,他引:2  
为了利用粒子群优化算法解决作业车间调度问题,提出了将调度问题转化为连续优化问题的有效策略;设计了Pareto档案粒子群算法(PAPSO),该算法将档案维护和全局最好位置选取结合在一起,在档案维护过程中为每个粒子选取全局最好位置;给出了变异与PAPSO的结合新策略.将PAPSO和带变异的PAPSO应用于15个调度实例,以最小化总拖后时间和最大完成时间,与强度Pareto进化算法2等进行比较,结果验证了PAPSO在作业车间调度方面的良好性能.  相似文献   

6.
一种离散型多目标粒子群优化算法   总被引:1,自引:0,他引:1  
为获得更好的非劣前端,提出一种离散型多目标粒子群优化算法。该算法根据离散型多目标优化问题的特点,将种群分成多个子种群,在各个子种群中利用表现型共享的适应度函数选择每个子种群的最优粒子。通过多个最优粒子的引导,使整个种群分布更均匀,避免陷入局部最优,保证了解的多样性。实验表明了该算法的有效性。  相似文献   

7.
多目标最优化的粒子群算法   总被引:8,自引:0,他引:8  
粒子群算法是一种新出现的进化算法,相对其它进化算法,它收敛速度快、规则简单、易于编程实现.采用粒子群算法对资产投资的多目标问题进行优化,解决了传统方法难以解决的问题.数值实例表明,采用该算法能对资产投资问题做出优化组合决策.  相似文献   

8.
针对粒子群算法(PSO)及其变种在约束多目标等复杂问题优化过程中所遇到的易陷入局部最优和收敛性问题,提出了一种基于动态学习和突变因子的粒子群算法(DSPSO)。首先,通过分析粒子群群体的学习机制,采用动态的学习策略,使粒子自适应动态调整认知成分和社会成分在迭代更新中的权重,以引导自身向最优解的方向探索,有效改善了群体的收敛速度;其次,通过引入阶梯突变因子的概念,使粒子在陷入局部最优时进行试探跳跃,阶梯突变赋予粒子突破更新步长限制的能力,使粒子在当前位置速度矢量方向上的二维空间邻域内进行试探寻优,当发现更优解时则跳出当前局部最优;最后,通过在BenchMark基准函数测试集中典型函数上的实验,证明了DSPSO的求解精度和收敛速度均优于对比算法。在多目标车辆路径问题实例优化中,解的可接受率和成功率分别为0.91和0.66,远优于对比算法中最优解的0.16和0.11,体现了所提改进算法在车辆路径问题中的优越性。  相似文献   

9.
提出组合粒子群优化和分布估计的多目标优化算法。在寻优迭代过程中,一半的后代由粒子群算法产生,带有变异操作的粒子群优化算法具有全局搜索能力;另一半后代采用分布估计算法来产生,分布估计算法具有良好的学习和局部搜索能力,由其提取决策空间的信息并建立期望解的概率分布模型,对这个分布模型进行采样而产生下一代的解。与多种多目标优化算法的比较实验表明,组合算法在基准函数ZDT1~ZDT3,ZDT6和ZDT6-1上获得的Pareto解集具有较好的收敛性与多样性,在ZDT4实例上的性能适中。  相似文献   

10.
为了利用粒子群优化算法解决作业车间调度问题,提出了将调度问题转化为连续优化问题的有效策略;设计了Pareto档案粒子群算法(PAPSO),该算法将档案维护和全局最好位置选取结合在一起,在档案维护过程中为每个粒子选取全局最好位置;给出了变异与PAPSO的结合新策略;最后将PAPSO和带变异的PAPSO应用于15个调度实例,以最小化总拖后时间和最大完成时间,与强度Pareto进化算法2等算法进行比较,结果验证了PAP—SO在作业车间调度方面的良好性能.  相似文献   

11.
群决策中两类偏好信息集成的目标规划模型   总被引:10,自引:1,他引:9  
带有不同偏好信息形式的群决策问题是一个重要的研究方向·根据多个决策者给出关于方案的两类偏好信息Fuzzy偏好关系矩阵和AHP判断矩阵,建立了一个能够集成这两类偏好信息的线性目标规划模型,通过求解这个模型可以直接得到每个方案的参考排序值,并使方案的排序结果最大程度地反映了每个决策者的偏好·最后给出了一个算例·  相似文献   

12.
13.
An application of multi-objective particle swarm optimization (MOPSO) algorithm for optimization of the hydrological model (HYMOD) is presented in this paper.MOPSO algorithm is used to find n...  相似文献   

14.
针对K-均值聚类算法存在的不足,提出了一种新的整合粒子群优化算法(PSO)和K-均值算法的聚类算法.在新算法中,首先结合使用粒子群优化算法和K-均值算法搜索全局最优解的位置,然后再用K-均值算法在全局最优解附近的局部空间内快速寻找最优聚类中心.通过对4个数据集的实验测试,将此算法与K-均值算法、基于粒子群的K-均值算法进行了比较.实验结果表明,新算法的聚类质量比后两个算法更优.  相似文献   

15.
针对现有的基于身份加密(identity based encryption, IBE)体系中缺乏权限管理问题, 提出一种基于信任服务IBE体系下的权限管理方案. 该方案采用门限的思想和算法对服务进行集中管理, 并结合基于角色的访问控制管理权限, 实现了细粒度的权限管理. 采用信任继承的思想为用户分配角色, 并采用集中审计的思想维护系统, 提高了系统的可靠性.  相似文献   

16.
分析了供应商优选与订货量分配问题的特性,构建了带界约束的多目标优化模型,并设计具备有综合学习机制的多目标微粒群优化算法以求解该模型.实验结果表明,该多目标微粒群优化算法是有效的.  相似文献   

17.
传统粒子群算法运行机理是通过粒子群全局最优和自身经验最优来搜索最优位置,不断迭代进化,以此趋近最优解,但该算法共享信息的局限性使其容易陷入局部最优.针对传统粒子群算法的不足,提出了共享历史最优搜索信息的粒子群算法.该粒子群体在搜索过程中,共享算法本次运行的种群个体历史最优信息、当前全局最优信息,及前几次运行过程中的种群个体历史最佳信息.通过5个经典函数的仿真实验测试,验证了该算法具有较强的全局搜索能力和收敛性.  相似文献   

18.
一种新的粒子群算法与人工鱼群算法的混合算法   总被引:1,自引:2,他引:1  
通过分析粒子群算法和人工鱼群算法的优缺点,利用粒子群算法收敛速度快及人工鱼群算法能较好地收敛到全局最优解的特点,提出了一种新的混合算法.算法以粒子群为基础进行设计,根据人工鱼群的公告板、群聚和随行策略的模式对粒子群进行速度与位置变更,使原有的粒子群变成具有一定智能的粒子,从而达到提高搜索精度及效率的目的.通过Generalize-Schwefel等3个经典函数进行优化仿真后发现,该混合算法具有搜索精度更高及收敛速度更快的特点,同时该算法在求解高维问题时具有明显优势.  相似文献   

19.
一种具有不同形式偏好信息的群决策方法   总被引:25,自引:3,他引:22  
给出了一种具有不同形式偏好信息的群决策方法·描述了在群决策中决策者可能给出的效用值、序关系值、互反判断矩阵、区间数评价值、模糊语言评价值和模糊互补判断矩阵等 6种不同形式的偏好信息 ,并给出了将不同形式的偏好信息均转化为模糊互补判断矩阵形式的计算公式·基于近年来最新发展的OWA算子给出了集结各决策者的偏好信息和方案优选的方法 ;最后给出了一个算例·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号