首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文给出并证明了第二积分中值定理的波勒形式和维尔斯特拉斯形式中,当区间[a,x]中的x→a时,“中间点”ξ→x,即 lim ξ—a/x—a=1;当[x,b]中的x→b时,“中间点”ξ→x,即lim b—ξ/b—x=1 1985年李文荣研究了当区间长度趋于零时柯西中值定理和推广的积分中值定理“中间点”的渐近性。在这之前,1982年的美国数学月刊上已有两篇文章,研究了当区间长度趋于零时,积分中值定理和泰勒定理“中间点”的渐近性。本文给出并证明了第二积分中值定理的波勒(O.Bonnet)形式和维尔斯特拉斯(Weierstrass)形式“中间点”的渐近性有关定理。  相似文献   

2.
关于积分第二中值定理的探究   总被引:2,自引:0,他引:2  
积分第二中值定理给出了ξ在闭区间[a,b]上取值的条件,本文在此基础上给出了ξ在开区间(a,b)内存在的一个充分条件以及ξ在(a,b)内唯一存在的充分条件.  相似文献   

3.
提到中值定理,读者会想到罗尔、拉格朗日、柯西等微分中值定理及积分中值定理。文[1]中又提出了微分学中的一个结论(称为中值定理),表述如下:定理设函数 f(x),g(x)在[a,6]上连续,在(a,6)内有连续导数 f′(x),g′(x),g′(x)≠0,则存在ξ∈[a,b]使有  相似文献   

4.
近年来,不少文章讨论积分中值定理中的中间点的渐近性质,并得到许多有趣的结果。但对于微分中值定理中间点的渐近性质,目前讨论甚少,本文主要讨论微分中值定理的中间点,并给它中间点的渐近估计式,结果为: 定理1 设f(x)在[a,b]上连续,(a,b)内可导,如果f(x)-f(a)是关于x—a的a阶无穷小,a≠1,则拉格朗日微分中值公式f(x)—f(a)=f(ξ)(x—a)中的中间点ξ  相似文献   

5.
在学习了导数之后,要想运用导数这一概念去分析和解决更复杂的问题,只知道怎样计算导数还是不够的,还需要掌握微分中值定理,它是微分应用的桥梁,对微分中值定理有必要进行更深入的研究.微分中值定理包括三个定理:[1]罗尔(Rolle)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(b)=f(a),则在(a,b)内至少存在一点ξ,使得 f’(ξ)=0.[2]拉格朗日(Lagrange)定理:假设函数 f(x)在闭区间[a,b]上连续,在开区间(a,b)内可  相似文献   

6.
关于积分第一中值定理   总被引:2,自引:0,他引:2  
关于积分第一中值定理(推广了的形式)的叙述,二十多年来,我国高等学校理科采用的各种版本,基本上大同小异。例如,有如下的叙述方式:定理1 设在区间[a,b]上函数f(x)连续而g(x)可积,并且g(x)在整个区间[a,b]上不变号。则有一点ξ∈[a,b]使  相似文献   

7.
关于“中间点”的渐近性的一个注记   总被引:2,自引:0,他引:2  
第一积分中值定理设f(x)在[a,b)上连续,g(x)在[a,b)上可积且不变号,则存在ξ∈(a,b)使得(1)文[1]讨论了(1)中的“中闻点”ξ当b→a~+时的渐近性,即下述下理1.定理1 若f(x)与g(x)在[a,b]上连续,且g(x)在(a,b)上不变号,f+(a)(f+(a)表示f在a点的右导数,下同)存在且不等于零,g(a)≠0,则对于(1)中的ξ有  相似文献   

8.
(一)众所周知,积分第一中值定理是下面的定理若函数f(x)在闭区间[a,b]上连续,函数g(x)在[a,b]上可积,且不变号,则在[a,b]上至少存在一点ζ,使得(?)注意,上述定理中的ζ∈[a,b],文[1]在不改变其条件的情况下,将结论加强为ζ∈(a,b),这种  相似文献   

9.
本文在Riemann积分第二中值定理中,加上一个非常一般化的条件后,得出了一个较强的结果:设函数f在区间[a,b]上非负、不增,且f(a+0)-f(b-0)>0,函数g在[a,b]上Riemann可积,则存在一点ξ∈(a,b),使得integral from n=a to b f(x)g(x)dx=f(a)integral from n=a to ξ g(x)dx。  相似文献   

10.
定积分的第二中值公式有下列三个定理给出的三种形式。定理1 假设函数f(x)在闭区间[a,b]上单调减小(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得定理2 假设函数f(x)在闭区间[a,b]上单调增加(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得  相似文献   

11.
积分中值定理的推广   总被引:7,自引:0,他引:7  
将Riemann积分中值定理中函数f(x)所满足的条件加以改进,得到如下积分中值定理:若函数f(x)是闭区间[α,b]上有原函数的可积函数,函数g(x)在[α,b]上可积且不变号,则存在ζ∈(α,b),使得∫α^b(x)g(x)dx=f(ζ)∫α^bg(x)dx。√a。a  相似文献   

12.
本文证明了Taylor中位定理和推广的广义中值定理中的ξ满足当b→a时,(ξ-a)/(b-a)→1/(n 2),推广了文[2]中的结果。  相似文献   

13.
证明了Stieltjes积分中值定理中的ξ,在一定的条件下,当b→a时,它将趋于a和b的中点,即.  相似文献   

14.
罗尔中值定理指出,当函数f(x)满足三个特定条件时,在区间内部至少存在一点ξ,使得F(ξ)=0,本文针对在区间[a,b]端点处不连续的函数以及无穷区间上的可导函数的相关问题作了进一步研究,所得结论推广和完善了文献中相应的定理.  相似文献   

15.
用初等的方法证明了[a,b]上的Riemann可积函数的连续点在[a,b]上是稠密的,并在应用上出了积分中值定理的简洁证明。  相似文献   

16.
利用任意一个m×n矩阵的行列式定义,将柯西中值定理推广到任意多个一元函数的情形,并得到了拉格朗日定理的一个几何意义上的推广:对任意正整数n,存在一条过点A(a,f(a))和B(b,f(b))的n次函数(曲线),并且在开区间(a,b)内至少存在一点ξ,使两函数(曲线)在该点的导数相等(切线平行),推出了积分中值定理.  相似文献   

17.
本文在被积函数f(x)可积且存在原函数的条件下,证明了积分第一中值定理,并证明了中间点ξ在开区间(a,b)内  相似文献   

18.
本文给出了第一积分中值定理以及第二中值定理,并从较强的条件和较繁的证明给出了第一积分中值定理的推广以及从中值点所存在的范围推广积分第二中值定理,并在较强条件下给出了一个简单的证明,得到推广后的第一、第二积分中值定理的结果是原来的[a,b]改为(a,b),其余结果不变。最后同样给出了积分中值定理的一个相关问题,然后给出了较为复杂的证明过程。  相似文献   

19.
本文把中值定理中,函数在闭区间[a,b]上连续的条件减弱为在闭区间[a,b]上可积,在开区间(a,b)有介值性,证明定理同样成立.  相似文献   

20.
证明了积分型Cauchy中值定理中的中值ξ,在一定的条件下,满足limb→a(ξ-a)/(b-a)=(1)/(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号