首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
复Finsler流形上的两个问题   总被引:2,自引:0,他引:2  
类似于实Finsler流形,在复流形的全纯切丛上引进Finsler度量F,并且定义G=F2为垂直丛上一Hermitian度量,然后利用Hermitian一些技巧得到复Finsler流形上的一些几何性质.在此基础上讨论了复流形M上给定的两个弱Khler复Finsler度量,如果它们射影等价则必仿射等价,以及流形M上赋予由复Berwald流形上复Finsler度量诱导的实Finsler度量必为实Berwald流形.  相似文献   

2.
利用MATHEMATICA里的Nsolve命令计算出满旗流形G2/T在差常数倍的情况下有十二个G-不变的爱因斯坦度量,其中六个是Khler爱因斯坦度量,六个非Khler爱因斯坦度量.同样用此方法可计算出旗流形E(8)/U(1)×SU(2)×SU(3)×SU(5)的爱因斯坦方程组有五个正实数解,其中一个是Khler爱因斯坦度量,四个非Khler爱因斯坦度量.  相似文献   

3.
现得到完备非紧且Ricci曲率非负有界n维(m=2n)的Khler流形M上的一个单值化定理.如果它满足如下条件:①kr(x0)≥-c/1 r2;②sobolev不等式‖f‖p≤C0‖▽f‖q,f∈C0∞(M),1≤q≤n,1/p=1/q-1/m;③∫_M Rnic<∞,那么,M是双全纯与一个拟射影簇.  相似文献   

4.
用一个单调函数ω(t) 为中介,利用Szasz-Durrmeyer算子导数的性质以及该算子的可换性和光滑模ωφλ(f,t)为特点,得到以下点态逼近逆定理对于f∈C[0,+∞),0≤λ≤1,φ(x)=x,δn(x)=φ(x)+1/n, 若|f(x)-Sn(f,x)|≤Mω(n-1/2δ1-λn(x)),其中ω(t)≥0, ω(ut)≤C(u2+1)ω(t),则对任意t>0,有ω2φλ(f,t)≤Ct2∑0<n≤t-1(n+1)ω(n-1)+Ct2‖f‖,ω1(f,t)≤Ct∑0<n≤t-1ω(n-(2-λ)/(2))+Ct‖f‖.此结果推广了有关ωφ(f,t)和ω(f,t)的结果.  相似文献   

5.
证明了如下结果:(1)如果X=∏τ∈∑Xτ是λ-超仿紧空间,则X是σ-集体正规空间当且仅当F∈∑ω,X=∏τ∈∑Xτ是σ-集体正规空间。(2)设X=∏i∈ωXi是可数仿紧的,则下列三条等价:X是σ-集体正规的;F∈[ω]ω,X=∏i∈FXi是σ-集体正规的;n∈ω,∏i≤nXi是σ-集体正规的。  相似文献   

6.
设Mn是等距嵌入到n+p维球空间Sn+p(1)的n(>2)维紧致子流形,具有平行的非零平均曲率向量且Ricci曲率有正的下界(n-1)c(0相似文献   

7.
本文将陈省身和Yau的定理推广到完备子流形的情形和M~n是全脐子流形的情形,得到如下定理。定理1 设M~n(n≥2,是S~(n+p) (1) (P>((n-1)(n-2))/2)中完备的极小子流形,如果supS≤n/(2-(2/((n-1)(n-2))))则M~n是全测地的或supS=n/(2-(2/((n-1)(n-2)))) 定理2 设M~n(n≥2)是S~(n+p) (1) (P>(((n-1)(n-2))/2)中具有平行平均曲率向量的紧致子流形,如果M~n的截面曲率为正且S<((((1+H~2)n)/2-(1/(q-1)))+nH~2),则M~n是全脐子流形。(q=((n-1)(n+2))/2) 其中M~n是浸入在单位球面S~(n+p) (1)中的n维子流形,S是M~n的第二基本形式长度平方,H是M~n的平均曲率。  相似文献   

8.
用一个单调函数ω(t)为中介 ,利用 Szász- Durrmeyer算子导数的性质以及该算子的可换性和光滑模ωφλ(f ,t)为特点 ,得到以下点态逼近逆定理 :对于 f∈ C[0 , ∞ ) ,0≤λ≤ 1,φ(x) =x ,δn(x) =φ(x) 1/ n ,若|f (x) - Sn(f ,x) |≤ Mω(n- 1 /2δ1 -λn (x) ) ,其中ω(t)≥ 0 , ω(ut)≤ C(u2 1)ω(t) ,则对任意 t>0 ,有ω2φλ(f ,t)≤ Ct2 ∑0 相似文献   

9.
设 d(n)和σ(n)分别是除数函数和除数和函数 ,本文将渐近估计式 ∑n≤ xd(n) =xlogx +(2γ -1 ) x+O(x ) (x >2 )和渐近估计式 ∑n≤ xσ(n) =ζ(2 )2 x2 +O(xlogx) (x >2 )进行了一系列的推广 ,给出了∑n≤ xp | nd(n) ,∑n≤ xp | nd(n) ,∑n≤ x(-1 ) n- 1 d(n) ,∑n≤ xp | nσ(n) ,∑n≤ xp | nσ(n) ,∑n≤ x(-1 ) n- 1 σ(n)等和式的渐近估计式 .  相似文献   

10.
研究空间形式中紧致极小子流形,得到这类子流形为全测地子流形的充分条件:设Mn(n>2)是空间形式Nn+p(C)中紧致极小等距浸入子流形,如果下列条件之一成立:(i)R>(n2-n+1-2/n)c-2/nQ,(ii)K>3/4n[n(n-1)c-R],则Mn是Nn+p(c)的全测地子流形.  相似文献   

11.
研究了拟常曲率黎曼流形中具有平行平均曲率向量的紧致子流形,得到一个积分不等式:∫Mn{(1 (1)/(2)sgn(p-1) (n)/(2n-1))σ2-[na (1)/(2)(b-|b|)(n 1)](σ-nH2) n(n-1)b2-((n)/(2n-1) 1)n2H4]*1≥0  相似文献   

12.
研究了非空紧致度量空间X上连续映射f:X→X,g:X→X的双重逆极限空间上移位映射σm fσn g:X→X的一个动力性质,证明了f^g为等度连续,当且仅当σf^σg为等度连续.  相似文献   

13.
本文沿用文[1]中的符号.主要说明以下几个事实:1.阐明矩阵扩充空间(?)(m;n)、对称方阵扩充空间(?)(p;p)和斜对称方阵扩充空间(?)(q;q)中无穷远点集的几何结构.说明了这些空间中的无穷远点集可以表为若干个互不相交的子集的和,每一个子集都是齐性复流形,而且其中除了维数最低的一个复流形为紧致外,其余都是非紧致的.特别,其中紧致的齐性复流形有时仅只包含一个,点.2.阐明上述紧致复流形具有与特征流形相类似的性质贸.即若函数f 在原来未扩充的空  相似文献   

14.
求解了含Caputo分数阶导数的分数阶微分方程初值问题 d~αu/dtα+ω~αu(t;α)=h(t),t>0,0≤n-1<α≤n,ω>0, u~(k)(0~+;α)=u_k,k=0,1,…,n-1.利用Laplace变换方法和广义 Mittag-Leffler函数,得到其解为u(t;α)=integral from n=0 to t (r~(α-1)E_α,α(-(ωτ)~α))h(t-τ)dτ+sum from k=0 to n-1 u_kt~kE_(α,1+k)(-(ωt)~α)。  相似文献   

15.
设(M,g)为紧致仿射K(a)hler流形,仿射K(a) hler度量g=∑fijdxidxj.作者证明了若f满足Δlog(det(fij ))=0及 Ricci曲率半正定,则M是Rn/Γ,其中Γ为Rn上离散等距子群.进一步,对光滑函数h,作者考虑M上的变分问题,其E uler-Lagrange方程为Δlog(det(fij))=4h(det(fij))-(1)/(2 ),通过解这个四阶方程的一类边值问题,构造了定义在R n上的欧氏完备仿射K(a)hler流形.  相似文献   

16.
主要证明(1)如果X=∏σ∈∑Xσ是遗传∑-仿紧空间,则是遗传正规弱θ-可加空间当且仅当F∈∑<ω,∏σ∈∑FXσ是遗传正规弱θ-可加空间.(2)设X=∏i∈ωXi是遗传可数仿紧的,则下列三条件等价是遗传正规弱θ-可加的;F∈ω<ω,∏i∈FXi是遗传正规弱θ-可加的;n∈ω,∏i≤nXi是遗传正规弱θ-可加的.  相似文献   

17.
主要证明了如下结果(1)如果是X=∏σ∈Xσ是||-仿紧空间, 则X是正规弱θ-可加细空间当且仅当F∈[]<ω,∏σ∈F Xσ是正规弱θ-可加细空间.(2)设X=∏i∈ωXi 是可数仿紧的, 则下列3条等价X是正规弱θ-可加细的;F∈[ω]<ω,∏ i∈FXi是正规弱θ-可加细的;n∈ω ,∏i≤n Xi是正规弱θ-可加细的.  相似文献   

18.
利用计算机得到广义旗流形SO(14)/U(1)×U(2)×SO(8)的爱因斯坦方程组的十二正实数解(差常数倍的情况下),其中8个是非Khler爱因斯坦度量,4个是Khler爱因斯坦度量.  相似文献   

19.
主要证明:(1)如果X=∏σ∈∑Xσ是遗传∑-仿紧空间,则是遗传正规弱θ-可加空间当且仅当F∈∑<ω,∏σ∈∑FXσ是遗传正规弱θ-可加空间.(2)设X=∏i∈ωXi是遗传可数仿紧的,则下列三条件等价:是遗传正规弱θ-可加的;F∈ω<ω,∏i∈FXi是遗传正规弱θ-可加的;n∈ω,∏i≤nXi是遗传正规弱θ-可加的.  相似文献   

20.
研究了在nearly Khler流形上某种处处非零Killing向量场的存在性与流形的拓扑和几何之间的联系.并且得到了下面的主要结论及其推论:设(M2n,g,J)是一个2n维的近复流形.如果在M上存在一个处处非零的Killing向量场ξ,使得ξ*∧Jξ*是闭2次形式,则M局部微分同胚于M1×M2,其中M1和M2分别是分布V∶=span{ξ,Jξ}和分布H:=span{ξ,Jξ}⊥的极大积分子流形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号