首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
利用有限群的性质,运用群扩张和数论的有关知识,给出了具有p2q阶循环正规子群且sylow2-子群为循环群时24p2q阶群G的构造,其中p  相似文献   

2.
利用有限群的性质、群扩张和数论的知识,给出了Sylow子群为循环群且具有阶正规子群时4pq阶群G的构造.  相似文献   

3.
具有p^2q^2阶自同构群的有限群   总被引:1,自引:0,他引:1  
假设有限群G为幂零或者G非幂零但是G有一个非平凡交换直因子。在这个假设下,给出了方程|Aut(G)|=p^2q^2的全部解G,其中p和q是任意不同的素数。  相似文献   

4.
设p,q为奇素数,且p>q,而G是p3q2阶群.利用有限群的子群之间的不同作用,讨论了群G的完全分类问题,并获得了其全部构造.  相似文献   

5.
设π是自然数集N的一个有限子集,n是π的最大值.称π是奇数连续的,如果π满足(a)n为奇数时,{1,3,…,n}∈π;(b)n为偶数时,{1,3,…,n-1}∈π.有限群G称为OOCn-群,如果G的全体元素的阶构成的集πe(G)是奇数连续的,其中,n是πe(G)的最大值.本文给出了OOCn-群的完整分类.  相似文献   

6.
 设p, q为奇素数,且p>q,对p3q阶群进行了完全分类,给出了这类群的全部构造。  相似文献   

7.
设有限群G是具有r(r为奇数)阶循环正规子群N的2nr阶群,本文根据群的扩张理论和数论知识给出了当N在G中补子群为循环群时G的构造及相关的计数定理.  相似文献   

8.
设p,q为奇素数,且pq,G是p~3q~3阶有限群.当G的Sylowq-子群是指数为q而阶为q~3的超特殊q-群时,利用有限群的局部分析方法,通过分析子群之间的不同作用,对群G进行完全分类,并获得了其全部构造.  相似文献   

9.
设p,q为不同的奇素数,G是p~4q阶群.当G的Sylowp-子群是幂零类为2且有非交换极大子群的p~4阶p-群时,利用有限群的局部分析方法,对群G进行完全分类,并获得了其全部构造.  相似文献   

10.
设p,q为奇素数,且p>q,而G是Sylow q-子群非交换的p2q3阶群。利用有限群的局部分析方法,对G进行了完全分类并获得了其全部构造。  相似文献   

11.
最高阶元素个数为2 m((m,30)=1)的有限群   总被引:2,自引:0,他引:2  
讨论了最高阶元数个数M(G)=2m的有限群.证明了当(m,30)=1时这类群是可解群.  相似文献   

12.
利用有限Abel群G的自同构群A(G)的阶来刻划群G的构造,用一种巧妙的方法,推导出了|A(G)|=24P2(P为奇素数)的有限Abel群G的全部类型,并给出了详细的推导.  相似文献   

13.
利用有限Abel群G的自同构群的阶和有限Abel群的性质,研究了自同构群A(G)阶为2tp2(t=1,2,3,p为奇素数)的有限Abel群G的构造.获得以下结果:当t=1时,G最多有4型;当t=2时,G最多有12型;当t=3时,G最多有21型.  相似文献   

14.
李世荣 《广西科学》1994,1(1):7-9,12
令G是一个有限群,P是一个固定奇素数.M<G表示M是G的真子群.记J2(G)=(M:M<G,|G:M|非素数幂,且|G:M|,=1}.本文讨论当J2(G)的元皆为幂零群时G的结构.  相似文献   

15.
研究了一类最高阶元素的个数为2的有限非交换群的性质,给出了关于它的五个等价条件.  相似文献   

16.
设p为奇素数,且p5,对Sylow p-子群循环的12pn阶群进行了完全分类并获得了其全部构造:1)当p≡1(mod 12)时,G恰有16个彼此不同构的类型;2)当p≡5(mod12)时,G恰有10个彼此不同构的类型;3)当p≡7(mod 12)时,G恰有14个彼此不同构的类型;4)当p≡11(mod 12)时,G恰有9个彼此不同构的类型.  相似文献   

17.
引进有限群的K-型这一概念和工具,讨论了最高阶元素个数| M(G)|=44,52的有限群G,确定了G的结构,并证明了G是可解群.  相似文献   

18.
本文完全刻画非平凡循环子群共轭类类数不大于2的有限群的结构,证明了非平凡循环子群共轭类类数不大于4的有限非可解群仅有PSL2(r),其中r=5,7,8,9。  相似文献   

19.
自同构群的阶为2~4p的有限Abel群G的构造   总被引:3,自引:0,他引:3  
利用有限Abel群G的自同构群A(G)的阶来讨论群G的构造,给出了|A(G)|=2~4p的有限Abel群G的全部类型.  相似文献   

20.
利用有限幂零群G的自同构群Aut(G)的阶来刻画群G的构造.在刻画的过程中,本文先通过某些有限P-群Q的自同构群Aut(Q)的阶来确定了群Q的结构,然后根据幂零群的性质:G可分解为它的所有Sylpi(G)(i=1,…,n)的直积,通过分类讨论的Aut(P1)阶,从而给出了自同构群阶为16p3(p为奇素数)的有限幂零群的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号