首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chfr defines a mitotic stress checkpoint that delays entry into metaphase   总被引:23,自引:0,他引:23  
Scolnick DM  Halazonetis TD 《Nature》2000,406(6794):430-435
Chemicals that target microtubules induce mitotic stress by affecting several processes that occur during mitosis. These processes include separation of the centrosomes in prophase, alignment of the chromosomes on the spindle in metaphase and sister-chromatid separation in anaphase. Many human cancers are sensitive to mitotic stress. This sensitivity is being exploited for therapy and implies checkpoint defects. The known mitotic checkpoint genes, which prevent entry into anaphase when the chromosomes are not properly aligned on the mitotic spindle, are, however, rarely inactivated in human cancer. Here we describe the chfr gene, which is inactivated owing to lack of expression or by mutation in four out of eight human cancer cell lines examined. Normal primary cells and tumour cell lines that express wild-type chfr exhibited delayed entry into metaphase when centrosome separation was inhibited by mitotic stress. In contrast, the tumour cell lines that had lost chfr function entered metaphase without delay. Ectopic expression of wild-type chfr restored the cell cycle delay and increased the ability of the cells to survive mitotic stress. Thus, chfr defines a checkpoint that delays entry into metaphase in response to mitotic stress.  相似文献   

2.
Reddy SK  Rape M  Margansky WA  Kirschner MW 《Nature》2007,446(7138):921-925
Eukaryotic cells rely on a surveillance mechanism known as the spindle checkpoint to ensure accurate chromosome segregation. The spindle checkpoint prevents sister chromatids from separating until all kinetochores achieve bipolar attachments to the mitotic spindle. Checkpoint proteins tightly inhibit the anaphase-promoting complex (APC), a ubiquitin ligase required for chromosome segregation and progression to anaphase. Unattached kinetochores promote the binding of checkpoint proteins Mad2 and BubR1 to the APC-activator Cdc20, rendering it unable to activate APC. Once all kinetochores are properly attached, however, cells inactivate the checkpoint within minutes, allowing for the rapid and synchronous segregation of chromosomes. How cells switch from strong APC inhibition before kinetochore attachment to rapid APC activation once attachment is complete remains a mystery. Here we show that checkpoint inactivation is an energy-consuming process involving APC-dependent multi-ubiquitination. Multi-ubiquitination by APC leads to the dissociation of Mad2 and BubR1 from Cdc20, a process that is reversed by a Cdc20-directed de-ubiquitinating enzyme. The mutual regulation between checkpoint proteins and APC leaves the cell poised for rapid checkpoint inactivation and ensures that chromosome segregation promptly follows the completion of kinetochore attachment. In addition, our results suggest a mechanistic basis for how cancer cells can have a compromised spindle checkpoint without corresponding mutations in checkpoint genes.  相似文献   

3.
Wang Y  Sheng G  Juranek S  Tuschl T  Patel DJ 《Nature》2008,456(7219):209-213
The slicer activity of the RNA-induced silencing complex is associated with argonaute, the RNase H-like PIWI domain of which catalyses guide-strand-mediated sequence-specific cleavage of target messenger RNA. Here we report on the crystal structure of Thermus thermophilus argonaute bound to a 5'-phosphorylated 21-base DNA guide strand, thereby identifying the nucleic-acid-binding channel positioned between the PAZ- and PIWI-containing lobes, as well as the pivot-like conformational changes associated with complex formation. The bound guide strand is anchored at both of its ends, with the solvent-exposed Watson-Crick edges of stacked bases 2 to 6 positioned for nucleation with the mRNA target, whereas two critically positioned arginines lock bases 10 and 11 at the cleavage site into an unanticipated orthogonal alignment. Biochemical studies indicate that key amino acid residues at the active site and those lining the 5'-phosphate-binding pocket made up of the Mid domain are critical for cleavage activity, whereas alterations of residues lining the 2-nucleotide 3'-end-binding pocket made up of the PAZ domain show little effect.  相似文献   

4.
Structure of the pancreatic lipase-procolipase complex.   总被引:11,自引:0,他引:11  
H van Tilbeurgh  L Sarda  R Verger  C Cambillau 《Nature》1992,359(6391):159-162
Interfacial adsorption of pancreatic lipase is strongly dependent on the physical chemical properties of the lipid surface. These properties are affected by amphiphiles such as phospholipids and bile salts. In the presence of such amphiphiles, lipase binding to the interface requires a protein cofactor, colipase. We obtained crystals of the pancreatic lipase-procolipase complex and solved the structure at 3.04 A resolution. Here we describe the structure of procolipase, which essentially consists of three 'fingers' and is topologically comparable to snake toxins. The tips of the fingers contain most of the hydrophobic amino acids and presumably form the interfacial binding site. Lipase binding occurs at the opposite side to this site and involves polar interactions. Determination of the three-dimensional structure of pancreatic lipase has revealed the presence of two domains: an amino-terminal domain, at residues 1-336 containing the active site and a carboxy-terminal domain at residues 337-449 (ref. 6). Procolipase binds exclusively to the C-terminal domain of lipase. No conformational change in the lipase molecule is induced by the binding of procolipase.  相似文献   

5.
Structure of the ESCRT-II endosomal trafficking complex   总被引:1,自引:0,他引:1  
Hierro A  Sun J  Rusnak AS  Kim J  Prag G  Emr SD  Hurley JH 《Nature》2004,431(7005):221-225
The multivesicular-body (MVB) pathway delivers transmembrane proteins and lipids to the lumen of the endosome. The multivesicular-body sorting pathway has crucial roles in growth-factor-receptor downregulation, developmental signalling, regulation of the immune response and the budding of certain enveloped viruses such as human immunodeficiency virus. Ubiquitination is a signal for sorting into the MVB pathway, which also requires the functions of three protein complexes, termed ESCRT-I, -II and -III (endosomal sorting complex required for transport). Here we report the crystal structure of the core of the yeast ESCRT-II complex, which contains one molecule of the Vps protein Vps22, the carboxy-terminal domain of Vps36 and two molecules of Vps25, and has the shape of a capital letter 'Y'. The amino-terminal coiled coil of Vps22 and the flexible linker leading to the ubiquitin-binding NZF domain of Vps36 both protrude from the tip of one branch of the 'Y'. Vps22 and Vps36 form nearly equivalent interactions with the two Vps25 molecules at the centre of the 'Y'. The structure suggests how ubiquitinated cargo could be passed between ESCRT components of the MVB pathway through the sequential transfer of ubiquitinated cargo from one complex to the next.  相似文献   

6.
Structure of the recA protein-ADP complex.   总被引:58,自引:0,他引:58  
R M Story  T A Steitz 《Nature》1992,355(6358):374-376
The recA protein catalyses the ATP-driven homologous pairing and strand exchange of DNA molecules. It is an allosteric enzyme: the ATPase activity is DNA-dependent, and ATP-bound recA protein has a high affinity for DNA, whereas the ADP-bound form has a low affinity. In the absence of ATP hydrolysis, recA protein can still promote homologous pairing, apparently through the formation of a triple-stranded intermediate. The exact role of ATP hydrolysis is not clear, but it presumably drives the triplex intermediate towards products. Here we determine the position of bound ADP diffused into the recA crystal. We show that only the phosphates are bound in the same way as in other NTPases containing the G/AXXXXGKT/S motif. We propose that recA protein may change its conformation upon ATP hydrolysis in a manner analogous to one such protein, the p21 protein from the ras oncogene. A model is presented to account for the allosteric stimulation of DNA binding by ATP. The mechanism by which nucleoside triphosphate hydrolysis is coupled to the binding of another ligand in recA protein and p21 may be typical of the large class of NTPases containing this conserved motif.  相似文献   

7.
Structure of the repressor-operator complex of bacteriophage 434   总被引:6,自引:0,他引:6  
J E Anderson  M Ptashne  S C Harrison 《Nature》1987,326(6116):846-852
The crystal structure of a specific complex between the DNA-binding domain of phage 434 repressor and a synthetic 434 operator DNA shows interactions that determine sequence-dependent affinity. The repressor recognizes its operators by its complementarity to a particular DNA conformation as well as by direct interaction with base pairs in the major groove.  相似文献   

8.
Translation initiation, the rate-limiting step of the universal process of protein synthesis, proceeds through sequential, tightly regulated steps. In bacteria, the correct messenger RNA start site and the reading frame are selected when, with the help of initiation factors IF1, IF2 and IF3, the initiation codon is decoded in the peptidyl site of the 30S ribosomal subunit by the fMet-tRNA(fMet) anticodon. This yields a 30S initiation complex (30SIC) that is an intermediate in the formation of the 70S initiation complex (70SIC) that occurs on joining of the 50S ribosomal subunit to the 30SIC and release of the initiation factors. The localization of IF2 in the 30SIC has proved to be difficult so far using biochemical approaches, but could now be addressed using cryo-electron microscopy and advanced particle separation techniques on the basis of three-dimensional statistical analysis. Here we report the direct visualization of a 30SIC containing mRNA, fMet-tRNA(fMet) and initiation factors IF1 and GTP-bound IF2. We demonstrate that the fMet-tRNA(fMet) is held in a characteristic and precise position and conformation by two interactions that contribute to the formation of a stable complex: one involves the transfer RNA decoding stem which is buried in the 30S peptidyl site, and the other occurs between the carboxy-terminal domain of IF2 and the tRNA acceptor end. The structure provides insights into the mechanism of 70SIC assembly and rationalizes the rapid activation of GTP hydrolysis triggered on 30SIC-50S joining by showing that the GTP-binding domain of IF2 would directly face the GTPase-activated centre of the 50S subunit.  相似文献   

9.
Katou Y  Kanoh Y  Bando M  Noguchi H  Tanaka H  Ashikari T  Sugimoto K  Shirahige K 《Nature》2003,424(6952):1078-1083
The checkpoint regulatory mechanism has an important role in maintaining the integrity of the genome. This is particularly important in S phase of the cell cycle, when genomic DNA is most susceptible to various environmental hazards. When chemical agents damage DNA, activation of checkpoint signalling pathways results in a temporary cessation of DNA replication. A replication-pausing complex is believed to be created at the arrested forks to activate further checkpoint cascades, leading to repair of the damaged DNA. Thus, checkpoint factors are thought to act not only to arrest replication but also to maintain a stable replication complex at replication forks. However, the molecular mechanism coupling checkpoint regulation and replication arrest is unknown. Here we demonstrate that the checkpoint regulatory proteins Tof1 and Mrc1 interact directly with the DNA replication machinery in Saccharomyces cerevisiae. When hydroxyurea blocks chromosomal replication, this assembly forms a stable pausing structure that serves to anchor subsequent DNA repair events.  相似文献   

10.
One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create gammaH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR, respectively) over a 50-kilobase region surrounding the DSB. This modification is important for recruiting numerous DSB-recognition and repair factors to the break site, including DNA damage checkpoint proteins, chromatin remodellers and cohesins. Multiple mechanisms for eliminating gammaH2AX as DNA repair completes are possible, including removal by histone exchange followed potentially by degradation, or, alternatively, dephosphorylation. Here we describe a three-protein complex (HTP-C, for histone H2A phosphatase complex) containing the phosphatase Pph3 that regulates the phosphorylation status of gammaH2AX in vivo and efficiently dephosphorylates gammaH2AX in vitro. gammaH2AX is lost from chromatin surrounding a DSB independently of the HTP-C, indicating that the phosphatase targets gammaH2AX after its displacement from DNA. The dephosphorylation of gammaH2AX by the HTP-C is necessary for efficient recovery from the DNA damage checkpoint.  相似文献   

11.
Efremov RG  Sazanov LA 《Nature》2011,476(7361):414-420
Complex I is the first and largest enzyme of the respiratory chain, coupling electron transfer between NADH and ubiquinone to the translocation of four protons across the membrane. It has a central role in cellular energy production and has been implicated in many human neurodegenerative diseases. The L-shaped enzyme consists of hydrophilic and membrane domains. Previously, we determined the structure of the hydrophilic domain. Here we report the crystal structure of the Esherichia coli complex I membrane domain at 3.0?? resolution. It includes six subunits, NuoL, NuoM, NuoN, NuoA, NuoJ and NuoK, with 55 transmembrane helices. The fold of the homologous antiporter-like subunits L, M and N is novel, with two inverted structural repeats of five transmembrane helices arranged, unusually, face-to-back. Each repeat includes a discontinuous transmembrane helix and forms half of a channel across the membrane. A network of conserved polar residues connects the two half-channels, completing the proton translocation pathway. Unexpectedly, lysines rather than carboxylate residues act as the main elements of the proton pump in these subunits. The fourth probable proton-translocation channel is at the interface of subunits N, K, J and A. The structure indicates that proton translocation in complex I, uniquely, involves coordinated conformational changes in six symmetrical structural elements.  相似文献   

12.
Structure of a monomeric oxygen-carrying complex   总被引:3,自引:0,他引:3  
G A Rodley  W T Robinson 《Nature》1972,235(5339):438-439
  相似文献   

13.
Members of the Wiskott-Aldrich syndrome protein (WASP) family control cytoskeletal dynamics by promoting actin filament nucleation with the Arp2/3 complex. The WASP relative WAVE regulates lamellipodia formation within a 400-kilodalton, hetero-pentameric WAVE regulatory complex (WRC). The WRC is inactive towards the Arp2/3 complex, but can be stimulated by the Rac GTPase, kinases and phosphatidylinositols. Here we report the 2.3-?ngstrom crystal structure of the WRC and complementary mechanistic analyses. The structure shows that the activity-bearing VCA motif of WAVE is sequestered by a combination of intramolecular and intermolecular contacts within the WRC. Rac and kinases appear to destabilize a WRC element that is necessary for VCA sequestration, suggesting the way in which these signals stimulate WRC activity towards the Arp2/3 complex. The spatial proximity of the Rac binding site and the large basic surface of the WRC suggests how the GTPase and phospholipids could cooperatively recruit the complex to membranes.  相似文献   

14.
Structure of the Fe-S complex in a bacterial ferredoxin   总被引:10,自引:0,他引:10  
L C Sieker  E Adman  L H Jensen 《Nature》1972,235(5332):40-42
  相似文献   

15.
Cortez D  Elledge SJ 《Nature》2000,406(6794):354-356
  相似文献   

16.
Wäsch R  Cross FR 《Nature》2002,418(6897):556-562
Cyclin degradation is central to regulation of the cell cycle. Mitotic exit was proposed to require degradation of the S phase cyclin Clb5 by the anaphase-promoting complex activated by Cdc20 (APC(Cdc20)). Furthermore, Clb5 degradation was thought to be necessary for effective dephosphorylation and activation of the APC regulatory subunit Cdh1 (also known as Hct1) and the cyclin-dependent kinase inhibitor Sic1 by the phosphatase Cdc14, allowing mitotic kinase inactivation and mitotic exit. Here we show, however, that spindle disassembly and cell division occur without significant APC(Cdc20)-mediated Clb5 degradation, as well as in the absence of both Cdh1 and Sic1. We find instead that destruction-box-dependent degradation of the mitotic cyclin Clb2 is essential for mitotic exit. APC(Cdc20) may be required for an essential early phase of Clb2 degradation, and this phase may be sufficient for most aspects of mitotic exit. Cdh1 and Sic1 may be required for further inactivation of Clb2-Cdk1, regulating cell size and the length of G1.  相似文献   

17.
Structure of a DNA-bound Ultrabithorax-Extradenticle homeodomain complex   总被引:6,自引:0,他引:6  
Passner JM  Ryoo HD  Shen L  Mann RS  Aggarwal AK 《Nature》1999,397(6721):714-719
  相似文献   

18.
A complex of phycobiliproteins, containing phycoerythrocyanin (PEC), C-phycovyanin (C-PC) and allo-phycocyanin (APC) as well as some linker polypeptides, was reconstructed. The absorption and fluoreacence spectra of the complex were compared with those of native phycobilisomes (PBS) and the phycobiliproteins. Based on the measured data, it can be concluded that the complex can be taken as a model of PBS and is an entirely functional group for excitation energy transfer step by step from peripheral PEC to APC. The single terminal emitter feature of the complex makes it favorable for clarifying energy transfer pathways and the kinetics in comparison with native PBS. Further research is carried on in the lab.  相似文献   

19.
Jönsson TJ  Johnson LC  Lowther WT 《Nature》2008,451(7174):98-101
Typical 2-Cys peroxiredoxins (Prxs) have an important role in regulating hydrogen peroxide-mediated cell signalling. In this process, Prxs can become inactivated through the hyperoxidation of an active site Cys residue to Cys sulphinic acid. The unique repair of this moiety by sulphiredoxin (Srx) restores peroxidase activity and terminates the signal. The hyperoxidized form of Prx exists as a stable decameric structure with each active site buried. Therefore, it is unclear how Srx can access the sulphinic acid moiety. Here we present the 2.6 A crystal structure of the human Srx-PrxI complex. This complex reveals the complete unfolding of the carboxy terminus of Prx, and its unexpected packing onto the backside of Srx away from the Srx active site. Binding studies and activity analyses of site-directed mutants at this interface show that the interaction is required for repair to occur. Moreover, rearrangements in the Prx active site lead to a juxtaposition of the Prx Gly-Gly-Leu-Gly and Srx ATP-binding motifs, providing a structural basis for the first step of the catalytic mechanism. The results also suggest that the observed interactions may represent a common mode for other proteins to bind to Prxs.  相似文献   

20.
Zimmer J  Nam Y  Rapoport TA 《Nature》2008,455(7215):936-943
Most proteins are secreted from bacteria by the interaction of the cytoplasmic SecA ATPase with a membrane channel, formed by the heterotrimeric SecY complex. Here we report the crystal structure of SecA bound to the SecY complex, with a maximum resolution of 4.5 ?ngstr?m (A), obtained for components from Thermotoga maritima. One copy of SecA in an intermediate state of ATP hydrolysis is bound to one molecule of the SecY complex. Both partners undergo important conformational changes on interaction. The polypeptide-cross-linking domain of SecA makes a large conformational change that could capture the translocation substrate in a 'clamp'. Polypeptide movement through the SecY channel could be achieved by the motion of a 'two-helix finger' of SecA inside the cytoplasmic funnel of SecY, and by the coordinated tightening and widening of SecA's clamp above the SecY pore. SecA binding generates a 'window' at the lateral gate of the SecY channel and it displaces the plug domain, preparing the channel for signal sequence binding and channel opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号