首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Simonson AB  Lake JA 《Nature》2002,416(6878):281-285
During decoding, a codon of messenger RNA is matched with its cognate aminoacyl-transfer RNA and the amino acid carried by the tRNA is added to the growing protein chain. Here we propose a molecular mechanism for the decoding phase of translation: the transorientation hypothesis. The model incorporates a newly identified tRNA binding site and utilizes a flip between two tRNA anticodon loop structures, the 5'-stacked and the 3'-stacked conformations. The anticodon loop acts as a three-dimensional hinge permitting rotation of the tRNA about a relatively fixed codon-anticodon pair. This rotation, driven by a conformational change in elongation factor Tu involving GTP hydrolysis, transorients the incoming tRNA into the A site from the D site of initial binding and decoding, where it can be proofread and accommodated. The proposed mechanisms are compatible with the known structures, conformations and functions of the ribosome and its component parts including tRNAs and EF-Tu, in both the GTP and GDP states.  相似文献   

2.
Termination of protein synthesis occurs when the messenger RNA presents a stop codon in the ribosomal aminoacyl (A) site. Class I release factor proteins (RF1 or RF2) are believed to recognize stop codons via tripeptide motifs, leading to release of the completed polypeptide chain from its covalent attachment to transfer RNA in the ribosomal peptidyl (P) site. Class I RFs possess a conserved GGQ amino-acid motif that is thought to be involved directly in protein-transfer-RNA bond hydrolysis. Crystal structures of bacterial and eukaryotic class I RFs have been determined, but the mechanism of stop codon recognition and peptidyl-tRNA hydrolysis remains unclear. Here we present the structure of the Escherichia coli ribosome in a post-termination complex with RF2, obtained by single-particle cryo-electron microscopy (cryo-EM). Fitting the known 70S and RF2 structures into the electron density map reveals that RF2 adopts a different conformation on the ribosome when compared with the crystal structure of the isolated protein. The amino-terminal helical domain of RF2 contacts the factor-binding site of the ribosome, the 'SPF' loop of the protein is situated close to the mRNA, and the GGQ-containing domain of RF2 interacts with the peptidyl-transferase centre (PTC). By connecting the ribosomal decoding centre with the PTC, RF2 functionally mimics a tRNA molecule in the A site. Translational termination in eukaryotes is likely to be based on a similar mechanism.  相似文献   

3.
At termination of protein synthesis, type I release factors promote hydrolysis of the peptidyl-transfer RNA linkage in response to recognition of a stop codon. Here we describe the crystal structure of the Thermus thermophilus 70S ribosome in complex with the release factor RF1, tRNA and a messenger RNA containing a UAA stop codon, at 3.2 A resolution. The stop codon is recognized in a pocket formed by conserved elements of RF1, including its PxT recognition motif, and 16S ribosomal RNA. The codon and the 30S subunit A site undergo an induced fit that results in stabilization of a conformation of RF1 that promotes its interaction with the peptidyl transferase centre. Unexpectedly, the main-chain amide group of Gln 230 in the universally conserved GGQ motif of the factor is positioned to contribute directly to peptidyl-tRNA hydrolysis.  相似文献   

4.
Frank J  Agrawal RK 《Nature》2000,406(6793):318-322
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis following genetic instructions in all organisms. It is composed of two unequal subunits: the smaller subunit binds messenger RNA and the anticodon end of transfer RNAs, and helps to decode the mRNA; and the larger subunit interacts with the amino-acid-carrying end of tRNAs and catalyses the formation of the peptide bonds. After peptide-bond formation, elongation factor G (EF-G) binds to the ribosome, triggering the translocation of peptidyl-tRNA from its aminoacyl site to the peptidyl site, and movement of mRNA by one codon. Here we analyse three-dimensional cryo-electron microscopy maps of the Escherichia coli 70S ribosome in various functional states, and show that both EF-G binding and subsequent GTP hydrolysis lead to ratchet-like rotations of the small 30S subunit relative to the large 50S subunit. Furthermore, our finding indicates a two-step mechanism of translocation: first, relative rotation of the subunits and opening of the mRNA channel following binding of GTP to EF-G; and second, advance of the mRNA/(tRNA)2 complex in the direction of the rotation of the 30S subunit, following GTP hydrolysis.  相似文献   

5.
The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A?site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A?site. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner. Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within Thermus thermophilus EF-G-ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P?site) on the 30S head and simultaneously establishes interaction with the exit site (E?site) on the 30S platform, a novel intra-subunit 'pe/E' hybrid state is formed. This state is stabilized by domain?IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the 'missing link' in terms of tRNA intermediates involved in the universally conserved translocation process.  相似文献   

6.
Qu X  Wen JD  Lancaster L  Noller HF  Bustamante C  Tinoco I 《Nature》2011,475(7354):118-121
The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs.  相似文献   

7.
A cryo-electron microscopic study of ribosome-bound termination factor RF2   总被引:16,自引:0,他引:16  
Protein synthesis takes place on the ribosome, where genetic information carried by messenger RNA is translated into a sequence of amino acids. This process is terminated when a stop codon moves into the ribosomal decoding centre (DC) and is recognized by a class-1 release factor (RF). RFs have a conserved GGQ amino-acid motif, which is crucial for peptide release and is believed to interact directly with the peptidyl-transferase centre (PTC) of the 50S ribosomal subunit. Another conserved motif of RFs (SPF in RF2) has been proposed to interact directly with stop codons in the DC of the 30S subunit. The distance between the DC and PTC is approximately 73 A. However, in the X-ray structure of RF2, SPF and GGQ are only 23 A apart, indicating that they cannot be at DC and PTC simultaneously. Here we show that RF2 is in an open conformation when bound to the ribosome, allowing GGQ to reach the PTC while still allowing SPF-stop-codon interaction. The results indicate new interpretations of accuracy in termination, and have implications for how the presence of a stop codon in the DC is signalled to PTC.  相似文献   

8.
Beebe K  Mock M  Merriman E  Schimmel P 《Nature》2008,451(7174):90-93
Synthesis of proteins containing errors (mistranslation) is prevented by aminoacyl transfer RNA synthetases through their accurate aminoacylation of cognate tRNAs and their ability to correct occasional errors of aminoacylation by editing reactions. A principal source of mistranslation comes from mistaking glycine or serine for alanine, which can lead to serious cell and animal pathologies, including neurodegeneration. A single specific G.U base pair (G3.U70) marks a tRNA for aminoacylation by alanyl-tRNA synthetase. Mistranslation occurs when glycine or serine is joined to the G3.U70-containing tRNAs, and is prevented by the editing activity that clears the mischarged amino acid. Previously it was assumed that the specificity for recognition of tRNA(Ala) for editing was provided by the same structural determinants as used for aminoacylation. Here we show that the editing site of alanyl-tRNA synthetase, as an artificial recombinant fragment, targets mischarged tRNA(Ala) using a structural motif unrelated to that for aminoacylation so that, remarkably, two motifs (one for aminoacylation and one for editing) in the same enzyme independently can provide determinants for tRNA(Ala) recognition. The structural motif for editing is also found naturally in genome-encoded protein fragments that are widely distributed in evolution. These also recognize mischarged tRNA(Ala). Thus, through evolution, three different complexes with the same tRNA can guard against mistaking glycine or serine for alanine.  相似文献   

9.
Synonymous codon bias has been examined in 78 human genes (19967 codons) and measured by relative synonymous codon usage (RSCU). Relative frequencies of all kinds of dinucleotides in 2,3 or 3,4 codon positions have been calculated, and codon-anticodon binding strength has been estimated by the stacking energies of codon-anticodon bases in Watson-Crick pairs. The data show common features in synonymous codon bias for all codon families in human genes: all C-ending codons, which possess the strongest codon-anticodon binding energies, are the most favored codons in almost all codon families, and those codons with medium codon-anticodon binding energies are avoided. Data analysis suggests that besides isochore and genome signature , codon-anticodon binding strength may be closely related to synonymous codon choice in human genes. The join-effect of these factors on human genes results in the common features in codon bias.  相似文献   

10.
The 30S ribosomal subunit has two primary functions in protein synthesis. It discriminates against aminoacyl transfer RNAs that do not match the codon of messenger RNA, thereby ensuring accuracy in translation of the genetic message in a process called decoding. Also, it works with the 50S subunit to move the tRNAs and associated mRNA by precisely one codon, in a process called translocation. Here we describe the functional implications of the high-resolution 30S crystal structure presented in the accompanying paper, and infer details of the interactions between the 30S subunit and its tRNA and mRNA ligands. We also describe the crystal structure of the 30S subunit complexed with the antibiotics paromomycin, streptomycin and spectinomycin, which interfere with decoding and translocation. This work reveals the structural basis for the action of these antibiotics, and leads to a model for the role of the universally conserved 16S RNA residues A1492 and A1493 in the decoding process.  相似文献   

11.
Translation initiation, the rate-limiting step of the universal process of protein synthesis, proceeds through sequential, tightly regulated steps. In bacteria, the correct messenger RNA start site and the reading frame are selected when, with the help of initiation factors IF1, IF2 and IF3, the initiation codon is decoded in the peptidyl site of the 30S ribosomal subunit by the fMet-tRNA(fMet) anticodon. This yields a 30S initiation complex (30SIC) that is an intermediate in the formation of the 70S initiation complex (70SIC) that occurs on joining of the 50S ribosomal subunit to the 30SIC and release of the initiation factors. The localization of IF2 in the 30SIC has proved to be difficult so far using biochemical approaches, but could now be addressed using cryo-electron microscopy and advanced particle separation techniques on the basis of three-dimensional statistical analysis. Here we report the direct visualization of a 30SIC containing mRNA, fMet-tRNA(fMet) and initiation factors IF1 and GTP-bound IF2. We demonstrate that the fMet-tRNA(fMet) is held in a characteristic and precise position and conformation by two interactions that contribute to the formation of a stable complex: one involves the transfer RNA decoding stem which is buried in the 30S peptidyl site, and the other occurs between the carboxy-terminal domain of IF2 and the tRNA acceptor end. The structure provides insights into the mechanism of 70SIC assembly and rationalizes the rapid activation of GTP hydrolysis triggered on 30SIC-50S joining by showing that the GTP-binding domain of IF2 would directly face the GTPase-activated centre of the 50S subunit.  相似文献   

12.
Klaholz BP  Myasnikov AG  Van Heel M 《Nature》2004,427(6977):862-865
Termination of protein synthesis by the ribosome requires two release factor (RF) classes. The class II RF3 is a GTPase that removes class I RFs (RF1 or RF2) from the ribosome after release of the nascent polypeptide. RF3 in the GDP state binds to the ribosomal class I RF complex, followed by an exchange of GDP for GTP and release of the class I RF. As GTP hydrolysis triggers release of RF3 (ref. 4), we trapped RF3 on Escherichia coli ribosomes using a nonhydrolysable GTP analogue. Here we show by cryo-electron microscopy that the complex can adopt two different conformational states. In 'state 1', RF3 is pre-bound to the ribosome, whereas in 'state 2' RF3 contacts the ribosome GTPase centre. The transfer RNA molecule translocates from the peptidyl site in state 1 to the exit site in state 2. This translocation is associated with a large conformational rearrangement of the ribosome. Because state 1 seems able to accommodate simultaneously both RF3 and RF2, whose position is known from previous studies, we can infer the release mechanism of class I RFs.  相似文献   

13.
Aminoacylation of RNA minihelices with alanine   总被引:39,自引:0,他引:39  
C Francklyn  P Schimmel 《Nature》1989,337(6206):478-481
The genetic code is determined by both the specificity of the triplet anticodon of tRNAs for codons in mRNAs and the specificity with which tRNAs are charged with amino acids. The latter depends on interactions between tRNAs and their charging enzymes, and an advance in understanding such interactions was provided recently by the demonstration that a major determinant of the identity of alanine tRNA is located in the amino-acid acceptor helix. Multiple substitutions in many distinct parts of the molecule do not prevent aminoacylation with alanine. Substitution of the G3.U70 base pair with G3.C70 or A3.U70 in the acceptor helix prevents aminoacylation in vivo and in vitro, however, and the introduction of this base pair into tRNA(Cys) (ref. 1) or tRNA(Phe) (refs 1, 2) enables both to accept alanine. The importance of a single base pair in the acceptor helix and the results of recent footprinting experiments promoted us to investigate the possibility that a minihelix, composed only of the amino-acid acceptor-T psi C helix, could be a substrate for alanine tRNA synthetase. We show here that a synthetic hairpin minihelix can be enzymatically aminoacylated with alanine. Alanine incorporation requires a single G.U base pair, and occurs in helices that otherwise differ significantly in sequence. Aminoacylation can be achieved with only seven base pairs in the helix.  相似文献   

14.
Bacterial ribosomes stalled at the 3' end of malfunctioning messenger RNAs can be rescued by transfer-messenger RNA (tmRNA)-mediated trans-translation. The SmpB protein forms a complex with the tmRNA, and the transfer-RNA-like domain (TLD) of the tmRNA then enters the A site of the ribosome. Subsequently, the TLD-SmpB module is translocated to the P site, a process that is facilitated by the elongation factor EF-G, and translation is switched to the mRNA-like domain (MLD) of the tmRNA. Accurate loading of the MLD into the mRNA path is an unusual initiation mechanism. Despite various snapshots of different ribosome-tmRNA complexes at low to intermediate resolution, it is unclear how the large, highly structured tmRNA is translocated and how the MLD is loaded. Here we present a cryo-electron microscopy reconstruction of a fusidic-acid-stalled ribosomal 70S-tmRNA-SmpB-EF-G complex (carrying both of the large ligands, that is, EF-G and tmRNA) at 8.3?? resolution. This post-translocational intermediate (TI(POST)) presents the TLD-SmpB module in an intrasubunit ap/P hybrid site and a tRNA(fMet) in an intrasubunit pe/E hybrid site. Conformational changes in the ribosome and tmRNA occur in the intersubunit space and on the solvent side. The key underlying event is a unique extra-large swivel movement of the 30S head, which is crucial for both tmRNA-SmpB translocation and MLD loading, thereby coupling translocation to MLD loading. This mechanism exemplifies the versatile, dynamic nature of the ribosome, and it shows that the conformational modes of the ribosome that normally drive canonical translation can also be used in a modified form to facilitate more complex tasks in specialized non-canonical pathways.  相似文献   

15.
Mechanism of ribosome frameshifting during translation of the genetic code   总被引:3,自引:0,他引:3  
R Weiss  J Gallant 《Nature》1983,302(5907):389-393
Some frameshift mutations are strongly suppressed by limitation for particular aminoacyl-tRNA species. Here, we show that ribosome frameshifting at a specific tryptophan codon during Trp-tRNA limitation accounts for suppression of a group of downstream frameshift alleles in the rIIB gene of bacteriophage T4. Genetic and physiological observations strongly suggest that ribosome frameshifting at this position depends on the binding of a noncognate (leucine) tRNA.  相似文献   

16.
Tsai A  Petrov A  Marshall RA  Korlach J  Uemura S  Puglisi JD 《Nature》2012,487(7407):390-393
The initiation of translation establishes the reading frame for protein synthesis and is a key point of regulation. Initiation involves factor-driven assembly at a start codon of a messenger RNA of an elongation-competent 70S ribosomal particle (in bacteria) from separated 30S and 50S subunits and initiator transfer RNA. Here we establish in Escherichia coli, using direct single-molecule tracking, the timing of initiator tRNA, initiation factor 2 (IF2; encoded by infB) and 50S subunit joining during initiation. Our results show multiple pathways to initiation, with orders of arrival of tRNA and IF2 dependent on factor concentration and composition. IF2 accelerates 50S subunit joining and stabilizes the assembled 70S complex. Transition to elongation is gated by the departure of IF2 after GTP hydrolysis, allowing efficient arrival of elongator tRNAs to the second codon presented in the aminoacyl-tRNA binding site (A site). These experiments highlight the power of single-molecule approaches to delineate mechanisms in complex multicomponent systems.  相似文献   

17.
Numata T  Ikeuchi Y  Fukai S  Suzuki T  Nureki O 《Nature》2006,442(7101):419-424
Uridine at the first anticodon position (U34) of glutamate, lysine and glutamine transfer RNAs is universally modified by thiouridylase into 2-thiouridine (s2U34), which is crucial for precise translation by restricting codon-anticodon wobble during protein synthesis on the ribosome. However, it remains unclear how the enzyme incorporates reactive sulphur into the correct position of the uridine base. Here we present the crystal structures of the MnmA thiouridylase-tRNA complex in three discrete forms, which provide snapshots of the sequential chemical reactions during RNA sulphuration. On enzyme activation, an alpha-helix overhanging the active site is restructured into an idiosyncratic beta-hairpin-containing loop, which packs the flipped-out U34 deeply into the catalytic pocket and triggers the activation of the catalytic cysteine residues. The adenylated RNA intermediate is trapped. Thus, the active closed-conformation of the complex ensures accurate sulphur incorporation into the activated uridine carbon by forming a catalytic chamber to prevent solvent from accessing the catalytic site. The structures of the complex with glutamate tRNA further reveal how MnmA specifically recognizes its three different tRNA substrates. These findings provide the structural basis for a general mechanism whereby an enzyme incorporates a reactive atom at a precise position in a biological molecule.  相似文献   

18.
Amrani N  Ghosh S  Mangus DA  Jacobson A 《Nature》2008,453(7199):1276-1280
Efficient translation initiation and optimal stability of most eukaryotic messenger RNAs depends on the formation of a closed-loop structure and the resulting synergistic interplay between the 5' m(7)G cap and the 3' poly(A) tail. Evidence of eIF4G and Pab1 interaction supports the notion of a closed-loop mRNP, but the mechanistic events that lead to its formation and maintenance are still unknown. Here we use toeprinting and polysome profiling assays to delineate ribosome positioning at initiator AUG codons and ribosome-mRNA association, respectively, and find that two distinct stable (resistant to cap analogue) closed-loop structures are formed during initiation in yeast cell-free extracts. The integrity of both forms requires the mRNA cap and poly(A) tail, as well as eIF4E, eIF4G, Pab1 and eIF3, and is dependent on the length of both the mRNA and the poly(A) tail. Formation of the first structure requires the 48S ribosomal complex, whereas the second requires an 80S ribosome and the termination factors eRF3/Sup35 and eRF1/Sup45. The involvement of the termination factors is independent of a termination event.  相似文献   

19.
Uemura S  Dorywalska M  Lee TH  Kim HD  Puglisi JD  Chu S 《Nature》2007,446(7134):454-457
The ribosome is a molecular machine that translates the genetic code contained in the messenger RNA into an amino acid sequence through repetitive cycles of transfer RNA selection, peptide bond formation and translocation. Here we demonstrate an optical tweezer assay to measure the rupture force between a single ribosome complex and mRNA. The rupture force was compared between ribosome complexes assembled on an mRNA with and without a strong Shine-Dalgarno (SD) sequence-a sequence found just upstream of the coding region of bacterial mRNAs, involved in translation initiation. The removal of the SD sequence significantly reduced the rupture force in complexes carrying an aminoacyl tRNA, Phe-tRNA(Phe), in the A site, indicating that the SD interactions contribute significantly to the stability of the ribosomal complex on the mRNA before peptide bond formation. In contrast, the presence of a peptidyl tRNA analogue, N-acetyl-Phe-tRNA(Phe), in the A site, which mimicked the post-peptidyl transfer state, weakened the rupture force as compared to the complex with Phe-tRNA(Phe), and the resultant force was the same for both the SD-containing and SD-deficient mRNAs. These results suggest that formation of the first peptide bond destabilizes the SD interaction, resulting in the weakening of the force with which the ribosome grips an mRNA. This might be an important requirement to facilitate movement of the ribosome along mRNA during the first translocation step.  相似文献   

20.
J D Bain  C Switzer  A R Chamberlin  S A Benner 《Nature》1992,356(6369):537-539
One serious limitation facing protein engineers is the availability of only 20 'proteinogenic' amino acids encoded by natural messenger RNA. The lack of structural diversity among these amino acids restricts the mechanistic and structural issues that can be addressed by site-directed mutagenesis. Here we describe a new technology for incorporating non-standard amino acids into polypeptides by ribosome-based translation. In this technology, the genetic code is expanded through the creation of a 65th codon-anticodon pair from unnatural nucleoside bases having non-standard hydrogen-bonding patterns. This new codon-anticodon pair efficiently supports translation in vitro to yield peptides containing a non-standard amino acid. The versatility of the ribosome as a synthetic tool offers new possibilities for protein engineering, and compares favourably with another recently described approach in which the genetic code is simply rearranged to recruit stop codons to play a coding role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号