首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bose-Einstein condensation of exciton polaritons   总被引:1,自引:0,他引:1  
Phase transitions to quantum condensed phases--such as Bose-Einstein condensation (BEC), superfluidity, and superconductivity--have long fascinated scientists, as they bring pure quantum effects to a macroscopic scale. BEC has, for example, famously been demonstrated in dilute atom gas of rubidium atoms at temperatures below 200 nanokelvin. Much effort has been devoted to finding a solid-state system in which BEC can take place. Promising candidate systems are semiconductor microcavities, in which photons are confined and strongly coupled to electronic excitations, leading to the creation of exciton polaritons. These bosonic quasi-particles are 10(9) times lighter than rubidium atoms, thus theoretically permitting BEC to occur at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for BEC of polaritons. Above a critical density, we observe massive occupation of the ground state developing from a polariton gas at thermal equilibrium at 19 K, an increase of temporal coherence, and the build-up of long-range spatial coherence and linear polarization, all of which indicate the spontaneous onset of a macroscopic quantum phase.  相似文献   

2.
Towards Bose-Einstein condensation of excitons in potential traps   总被引:5,自引:0,他引:5  
Butov LV  Lai CW  Ivanov AL  Gossard AC  Chemla DS 《Nature》2002,417(6884):47-52
An exciton is an electron-hole bound pair in a semiconductor. In the low-density limit, it is a composite Bose quasi-particle, akin to the hydrogen atom. Just as in dilute atomic gases, reducing the temperature or increasing the exciton density increases the occupation numbers of the low-energy states leading to quantum degeneracy and eventually to Bose-Einstein condensation (BEC). Because the exciton mass is small--even smaller than the free electron mass--exciton BEC should occur at temperatures of about 1 K, many orders of magnitude higher than for atoms. However, it is in practice difficult to reach BEC conditions, as the temperature of excitons can considerably exceed that of the semiconductor lattice. The search for exciton BEC has concentrated on long-lived excitons: the exciton lifetime against electron-hole recombination therefore should exceed the characteristic timescale for the cooling of initially hot photo-generated excitons. Until now, all experiments on atom condensation were performed on atomic gases confined in the potential traps. Inspired by these experiments, and using specially designed semiconductor nanostructures, we have collected quasi-two-dimensional excitons in an in-plane potential trap. Our photoluminescence measurements show that the quasi-two-dimensional excitons indeed condense at the bottom of the traps, giving rise to a statistically degenerate Bose gas.  相似文献   

3.
Macroscopically ordered state in an exciton system   总被引:2,自引:0,他引:2  
Butov LV  Gossard AC  Chemla DS 《Nature》2002,418(6899):751-754
There is a rich variety of quantum liquids -- such as superconductors, liquid helium and atom Bose-Einstein condensates -- that exhibit macroscopic coherence in the form of ordered arrays of vortices. Experimental observation of a macroscopically ordered electronic state in semiconductors has, however, remained a challenging and relatively unexplored problem. A promising approach for the realization of such a state is to use excitons, bound pairs of electrons and holes that can form in semiconductor systems. At low densities, excitons are Bose-particles, and at low temperatures, of the order of a few kelvin, excitons can form a quantum liquid -- that is, a statistically degenerate Bose gas or even a Bose-Einstein condensate. Here we report photoluminescence measurements of a quasi-two-dimensional exciton gas in GaAs/AlGaAs coupled quantum wells and the observation of a macroscopically ordered exciton state. Our spatially resolved measurements reveal fragmentation of the ring-shaped emission pattern into circular structures that form periodic arrays over lengths up to 1 mm.  相似文献   

4.
Long-range transport in excitonic dark states in coupled quantum wells   总被引:1,自引:0,他引:1  
Snoke D  Denev S  Liu Y  Pfeiffer L  West K 《Nature》2002,418(6899):754-757
During the past ten years, coupled quantum wells have emerged as a promising system for experiments on Bose condensation of excitons, with numerous theoretical and experimental studies aimed at the demonstration of this effect. One of the issues driving these studies is the possibility of long-range coherent transport of excitons. Excitons in quantum wells typically diffuse only a few micrometres from the spot where they are generated by a laser pulse; their diffusion is limited by their lifetime (typically a few nanoseconds) and by scattering due to disorder in the well structure. Here we report photoluminescence measurements of InGaAs quantum wells and the observation of an effect by which luminescence from excitons appears hundreds of micrometres away from the laser excitation spot. This luminescence appears as a ring around the laser spot; almost none appears in the region between the laser spot and the ring. This implies that the excitons must travel in a dark state until they reach some critical distance, at which they collectively revert to luminescing states. It is unclear whether this effect is related to macroscopic coherence caused by Bose condensation of excitons.  相似文献   

5.
Bose-Einstein condensation of atomic gases   总被引:2,自引:0,他引:2  
Anglin JR  Ketterle W 《Nature》2002,416(6877):211-218
The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three long-standing goals. First, cooling of neutral atoms into their motional ground state, thus subjecting them to ultimate control, limited only by Heisenberg's uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum state, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of a gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum-degenerate gases has grown, and now includes metastable and fermionic atoms. Condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions.  相似文献   

6.
Bloch I  Hansch TW  Esslinger T 《Nature》2000,403(6766):166-170
The experimental realization of Bose-Einstein condensates of dilute gases has allowed investigations of fundamental concepts in quantum mechanics at ultra-low temperatures, such as wave-like behaviour and interference phenomena. The formation of an interference pattern depends fundamentally on the phase coherence of a system; the latter may be quantified by the spatial correlation function. Phase coherence over a long range is the essential factor underlying Bose-Einstein condensation and related macroscopic quantum phenomena, such as superconductivity and superfluidity. Here we report a direct measurement of the phase coherence properties of a weakly interacting Bose gas of rubidium atoms. Effectively, we create a double slit for magnetically trapped atoms using a radio wave field with two frequency components. The correlation function of the system is determined by evaluating the interference pattern of two matter waves originating from the spatially separated 'slit' regions of the trapped gas. Above the critical temperature for Bose-Einstein condensation, the correlation function shows a rapid gaussian decay, as expected for a thermal gas. Below the critical temperature, the correlation function has a different shape: a slow decay towards a plateau is observed, indicating the long-range phase coherence of the condensate fraction.  相似文献   

7.
Eisenstein JP  Macdonald AH 《Nature》2004,432(7018):691-694
An exciton is the particle-like entity that forms when an electron is bound to a positively charged 'hole'. An ordered electronic state in which excitons condense into a single quantum state was proposed as a theoretical possibility many years ago. We review recent studies of semiconductor bilayer systems that provide clear evidence for this phenomenon and explain why exciton condensation in the quantum Hall regime, where these experiments were performed, is as likely to occur in electron-electron bilayers as in electron-hole bilayers. In current quantum Hall excitonic condensates, disorder induces mobile vortices that flow in response to a supercurrent and limit the extremely large bilayer counterflow conductivity.  相似文献   

8.
为从物理本质上揭示光波偏振态、偏振的叠加、混合和传播等概念和应用,利用相干矩阵方法分析光波偏振态。深入探讨了几种特殊意义情况下光波相干矩阵的特点及其可能的合成方式。选择部分偏振态通过线性光学元件和以布儒斯特角入射介质分界面时透射光偏振特性分析的典型例子,揭示了光波偏振态的变换问题。并在邦加球中以图解形式表示光波偏振态的几种合成形式及相干矩阵传输前后的偏振态变换。图解法使物理量的代数表示几何化,能更形象地描述偏振态的物理意义。分析表明,完全描述光波的偏振特性需要相干矩阵的本征值和本征态共同表征。  相似文献   

9.
Quantum nature of a strongly coupled single quantum dot-cavity system   总被引:1,自引:0,他引:1  
Cavity quantum electrodynamics (QED) studies the interaction between a quantum emitter and a single radiation-field mode. When an atom is strongly coupled to a cavity mode, it is possible to realize important quantum information processing tasks, such as controlled coherent coupling and entanglement of distinguishable quantum systems. Realizing these tasks in the solid state is clearly desirable, and coupling semiconductor self-assembled quantum dots to monolithic optical cavities is a promising route to this end. However, validating the efficacy of quantum dots in quantum information applications requires confirmation of the quantum nature of the quantum-dot-cavity system in the strong-coupling regime. Here we find such confirmation by observing quantum correlations in photoluminescence from a photonic crystal nanocavity interacting with one, and only one, quantum dot located precisely at the cavity electric field maximum. When off-resonance, photon emission from the cavity mode and quantum-dot excitons is anticorrelated at the level of single quanta, proving that the mode is driven solely by the quantum dot despite an energy mismatch between cavity and excitons. When tuned to resonance, the exciton and cavity enter the strong-coupling regime of cavity QED and the quantum-dot exciton lifetime reduces by a factor of 145. The generated photon stream becomes antibunched, proving that the strongly coupled exciton/photon system is in the quantum regime. Our observations unequivocally show that quantum information tasks are achievable in solid-state cavity QED.  相似文献   

10.
The self-assembly of semiconductor quantum dots has opened up new opportunities in photonics. Quantum dots are usually described as 'artificial atoms', because electron and hole confinement gives rise to discrete energy levels. This picture can be justified from the shell structure observed as a quantum dot is filled either with excitons (bound electron-hole pairs) or with electrons. The discrete energy levels have been most spectacularly exploited in single photon sources that use a single quantum dot as emitter. At low temperatures, the artificial atom picture is strengthened by the long coherence times of excitons in quantum dots, motivating the application of quantum dots in quantum optics and quantum information processing. In this context, excitons in quantum dots have already been manipulated coherently. We show here that quantum dots can also possess electronic states that go far beyond the artificial atom model. These states are a coherent hybridization of localized quantum dot states and extended continuum states: they have no analogue in atomic physics. The states are generated by the emission of a photon from a quantum dot. We show how a new version of the Anderson model that describes interactions between localized and extended states can account for the observed hybridization.  相似文献   

11.
Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.  相似文献   

12.
Bose-Einstein condensation is one of the most fascinating phenomena predicted by quantum mechanics. It involves the formation of a collective quantum state composed of identical particles with integer angular momentum (bosons), if the particle density exceeds a critical value. To achieve Bose-Einstein condensation, one can either decrease the temperature or increase the density of bosons. It has been predicted that a quasi-equilibrium system of bosons could undergo Bose-Einstein condensation even at relatively high temperatures, if the flow rate of energy pumped into the system exceeds a critical value. Here we report the observation of Bose-Einstein condensation in a gas of magnons at room temperature. Magnons are the quanta of magnetic excitations in a magnetically ordered ensemble of magnetic moments. In thermal equilibrium, they can be described by Bose-Einstein statistics with zero chemical potential and a temperature-dependent density. In the experiments presented here, we show that by using a technique of microwave pumping it is possible to excite additional magnons and to create a gas of quasi-equilibrium magnons with a non-zero chemical potential. With increasing pumping intensity, the chemical potential reaches the energy of the lowest magnon state, and a Bose condensate of magnons is formed.  相似文献   

13.
Strong coupling in a single quantum dot-semiconductor microcavity system   总被引:2,自引:0,他引:2  
Cavity quantum electrodynamics, a central research field in optics and solid-state physics, addresses properties of atom-like emitters in cavities and can be divided into a weak and a strong coupling regime. For weak coupling, the spontaneous emission can be enhanced or reduced compared with its vacuum level by tuning discrete cavity modes in and out of resonance with the emitter. However, the most striking change of emission properties occurs when the conditions for strong coupling are fulfilled. In this case there is a change from the usual irreversible spontaneous emission to a reversible exchange of energy between the emitter and the cavity mode. This coherent coupling may provide a basis for future applications in quantum information processing or schemes for coherent control. Until now, strong coupling of individual two-level systems has been observed only for atoms in large cavities. Here we report the observation of strong coupling of a single two-level solid-state system with a photon, as realized by a single quantum dot in a semiconductor microcavity. The strong coupling is manifest in photoluminescence data that display anti-crossings between the quantum dot exciton and cavity-mode dispersion relations, characterized by a vacuum Rabi splitting of about 140 microeV.  相似文献   

14.
The tunneling of macroscopic object is one of the most fascinating phenomena in condensed matter physics. During the last decade, the problem of quantum tunneling of magnetization in nanometer-scale magnets has attracted a great deal of theoretical and experimental interest. A review of recent theoretical research of the macroscopic quantum phenomena in nanometer-scale single-domain magnets is presented in this paper. It includes macroscopic quantum tunneling (MQT) and coherence (MQC) in single-domain magnetic particles, the topological phase interference or spin-parity effects, and tunneling of magnetization in an arbitrarily directed magnetic field. The general formulas are shown to evaluate the tunneling rate and the tunneling level splitting for single-domain AFM particles. A nontrivial generalization of Kramers degeneracy for double-well system is provided to coherently spin tunneling for spin systems with m-fold rotational symmetry. The effects induced by the external magnetic field have been studied, where the field is along the easy, medium, hard axis, or arbitrary direction.  相似文献   

15.
The coherence of waves in periodic systems (lattices) is crucial to their dynamics, as interference effects, such as Bragg reflections, largely determine their propagation. Whereas linear systems allow superposition, nonlinearity introduces a non-trivial interplay between localization effects, coupling between lattice sites, and incoherence. Until recently, all research on solitary waves (solitons) in nonlinear lattices has involved only coherent waves. In such cases, linear dispersion or diffraction of wave packets can be balanced by nonlinear effects, resulting in coherent lattice (or 'discrete') solitons; these have been studied in many branches of science. However, in most natural systems, waves with only partial coherence are more common, because fluctuations (thermal, quantum or some other) can reduce the correlation length to a distance comparable to the lattice spacing. Such systems should support random-phase lattice solitons displaying distinct features. Here we report the experimental observation of random-phase lattice solitons, demonstrating their self-trapping and local periodicity in real space, in addition to their multi-peaked power spectrum in momentum space. We discuss the relevance of such solitons to other nonlinear periodic systems in which fluctuating waves propagate, such as atomic systems, plasmas and molecular chains.  相似文献   

16.
将数理统计中的正态分布与物理学中的量子力学不确定性有效结合,通过二维正态分布密度函数和有序算符内的积分技术,简单有效地求得量子空间中粒子坐标|x〉,动量本征态|p〉及相干态|z〉在 Fock 表象中的表达式,并证明其完备性.结果表明:通过采用数理统计及正规乘积方法,求证结果准确,且大大简化了求证过程.  相似文献   

17.
The effect of quantum statistics in quantum gases and liquids results in observable collective properties among many-particle systems. One prime example is Bose-Einstein condensation, whose onset in a quantum liquid leads to phenomena such as superfluidity and superconductivity. A Bose-Einstein condensate is generally defined as a macroscopic occupation of a single-particle quantum state, a phenomenon technically referred to as off-diagonal long-range order due to non-vanishing off-diagonal components of the single-particle density matrix. The wavefunction of the condensate is an order parameter whose phase is essential in characterizing the coherence and superfluid phenomena. The long-range spatial coherence leads to the existence of phase-locked multiple condensates in an array of superfluid helium, superconducting Josephson junctions or atomic Bose-Einstein condensates. Under certain circumstances, a quantum phase difference of pi is predicted to develop among weakly coupled Josephson junctions. Such a meta-stable pi-state was discovered in a weak link of superfluid 3He, which is characterized by a 'p-wave' order parameter. The possible existence of such a pi-state in weakly coupled atomic Bose-Einstein condensates has also been proposed, but remains undiscovered. Here we report the observation of spontaneous build-up of in-phase ('zero-state') and antiphase ('pi-state') 'superfluid' states in a solid-state system; an array of exciton-polariton condensates connected by weak periodic potential barriers within a semiconductor microcavity. These in-phase and antiphase states reflect the band structure of the one-dimensional polariton array and the dynamic characteristics of metastable exciton-polariton condensates.  相似文献   

18.
The entanglement of quantum states is both a central concept in fundamental physics and a potential tool for realizing advanced materials and applications. The quantum superpositions underlying entanglement are at the heart of the intricate interplay of localized spin states and itinerant electronic states that gives rise to the Kondo effect in certain dilute magnetic alloys. In systems where the density of localized spin states is sufficiently high, they can no longer be treated as non-interacting; if they form a dense periodic array, a Kondo lattice may be established. Such a Kondo lattice gives rise to the emergence of charge carriers with enhanced effective masses, but the precise nature of the coherent Kondo state responsible for the generation of these heavy fermions remains highly debated. Here we use atomic-resolution tunnelling spectroscopy to investigate the low-energy excitations of a generic Kondo lattice system, YbRh(2)Si(2). We find that the hybridization of the conduction electrons with the localized 4f electrons results in a decrease in the tunnelling conductance at the Fermi energy. In addition, we observe unambiguously the crystal-field excitations of the Yb(3+) ions. A strongly temperature-dependent peak in the tunnelling conductance is attributed to the Fano resonance resulting from tunnelling into the coherent heavy-fermion states that emerge at low temperature. Taken together, these features reveal how quantum coherence develops in heavy 4f-electron Kondo lattices. Our results demonstrate the efficiency of real-space electronic structure imaging for the investigation of strong electronic correlations, specifically with respect to coherence phenomena, phase coexistence and quantum criticality.  相似文献   

19.
考察了依赖强度耦合的广义Jaynes-Cummings模型.假定初始时光场是相干态、原子处于相干迭加作者发现,在相位匹配条件下,初始场的相干态展示周期性的复原效应.同时,还证明了在描写光场的相干性方面,光场的量子相位与量子相干性是并协的.?烫  相似文献   

20.
Strongly correlated quantum systems are among the most intriguing and fundamental systems in physics. One such example is the Tonks-Girardeau gas, proposed about 40 years ago, but until now lacking experimental realization; in such a gas, the repulsive interactions between bosonic particles confined to one dimension dominate the physics of the system. In order to minimize their mutual repulsion, the bosons are prevented from occupying the same position in space. This mimics the Pauli exclusion principle for fermions, causing the bosonic particles to exhibit fermionic properties. However, such bosons do not exhibit completely ideal fermionic (or bosonic) quantum behaviour; for example, this is reflected in their characteristic momentum distribution. Here we report the preparation of a Tonks-Girardeau gas of ultracold rubidium atoms held in a two-dimensional optical lattice formed by two orthogonal standing waves. The addition of a third, shallower lattice potential along the long axis of the quantum gases allows us to enter the Tonks-Girardeau regime by increasing the atoms' effective mass and thereby enhancing the role of interactions. We make a theoretical prediction of the momentum distribution based on an approach in which trapped bosons acquire fermionic properties, finding that it agrees closely with the measured distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号