首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
压电类智能层合结构的ANSYS仿真分析   总被引:6,自引:0,他引:6  
分别介绍了压电类智能结构的基本概念及其在土木工程中的应用、大型有限元分析软件ANSYS及其耦合场分析功能.并运用有限元软件ANSYS强大的耦合场分析功能计算了压电智能层合梁在静电场中的位移、应力和谐振模态.  相似文献   

2.
在ANSYS的软件平台上,利用有限元分析方法对复合压电圆片振子进行建模仿真实验,得到在不同边界条件下复合压电振子弯曲振动一阶模态及振幅分布图,仿真振动频率与理论计算值非常接近.相对传统振动模式分析方法,此方法更为简单、直观.  相似文献   

3.
基于压电石英晶片扭转效应的扭矩传感器原理与研制   总被引:2,自引:0,他引:2  
发明了一种基于压电石英晶片扭转效应的扭矩传感器,介绍了其理论基础、扭转束缚电荷密度分布规律与电极的粘贴方法,以及扭矩传感器性能标定.该传感器同其他石英扭矩传感器相比,突出特点是采用石英晶片的扭转效应而不是通常采用的剪切效应来建构的.整个扭矩晶组仅由3片普通Y0°切型的石英晶片组成,采用分割电极法布置检测电极,晶组的组成方式能够减小或避免径向力和轴向力的横向干扰,同时又能提高传感器的灵敏度.经标定该传感器的技术指标全面达到CIRP-STCC规定的测力仪使用标准.  相似文献   

4.
林玲 《科技资讯》2009,(36):39-40
介绍了压电效应与压电陶瓷材料相关理论,利用压电材料的正压电效应,可以将机械能转换为电能,ANSYS大型有限元分析软件可进行力电耦合场分析,利ANSYS对压电陶瓷薄膜的力电转换进行有限元模拟与分析,对压电薄膜施加一定外力,分析产生的电压特性。  相似文献   

5.
新型聚合物石英压电传感器制备过程中,AT切型石英压电传感器基体的表面粗糙度及其基膜界面化学性质影响聚合物薄膜的生长,导致聚合物薄膜厚度不均匀、表面存在缺陷,使得传感器采集的频率信号不稳定.本文建立了新型聚合物石英压电传感器在考虑薄膜厚度不均、中心缺陷条件下的力学模型,利用ANSYS有限元软件对其进行模态分析,得到复杂条件下传感器振动特性.模态分析结果发现,传感器固有频率值随聚合物薄膜缺陷的半径值增大呈现出从稳定到发散的趋势、随薄膜的厚度值增大呈现出线性增大的趋势.研究结果表明,新型聚合物石英压电传感器的生产应确保薄膜厚度均匀且严格控制中心缺陷半径小于0.5 mm,该结果为制备稳定的新型聚合物石英压电传感器提供了重要依据.  相似文献   

6.
压电体扭转效应研究   总被引:5,自引:3,他引:5  
初步探讨了压电体的扭转效应。应用弹性理论、压电理论分析了压电体内的扭转应力及由其所导致的非线性极化状态。由电动力学理论得知,极化将会在空间产生电场。根据电场的等效原理,极化梯度的存在,不仅在压电体表面上产生等效面缚电荷,在压电体内部同时也会有等效体束缚电荷聚集。从麦克斯韦方程级及矢量分析出发,推导得到了束缚电荷激发的电场所满足的偏微分方程。通过引入静电场的标量位函数,将电场强度的矢量泊松方转化为位势的椭圆型偏微分方程的诺依曼边值问题。采用有限元法求解得到了束缚电荷产生的电场强度在压电体内及边界上的分布,得到了迥异于线性极化的结果。根据导体在电场中的边界条件分析,有效地在压电体表面布置了检测电极。理论分析结论得到了实验结果的有力支持,并将为单压电体扭矩测量技术奠定基础。  相似文献   

7.
低腐蚀隧道密度压电石英晶体   总被引:1,自引:0,他引:1  
  相似文献   

8.
压电石英晶体生物传感器及其应用   总被引:2,自引:0,他引:2  
压电石英晶体生物传感器是一种将高灵敏压电传感器与现代生物技术相结合的新型生物传感器,适用于微量物质的精密测量。本文介绍这类传感器的基本原理、结构及其应用,并展望了压电石英晶体生物传感器的发展趋势。  相似文献   

9.
为了有效实施压电分流阻尼减振,创建一个能预估其减振效果的动力学分析模型以指导减振设计.根据压电分流薄板结构,提出了一种将基体结构和分流电路分别建模并通过压电片将二者耦合起来的分步耦合建模方法.在ANSYS软件平台上,详细描述了面向压电分流薄板结构采用分步耦合法的建模流程.实验验证了建模方法的合理性,压电分流阻尼对结构具有较好的减振效果,降低共振响应幅度可达50%以上.分析了电感值、压电片贴敷位置、压电片面积等参数对薄板振动响应的影响.结果表明:对于电阻-电感串联及并联分流电路,存在一个最优的电感值可使薄板减振效果最优;压电片贴在变形较大的区域及增大压电片尺寸对减振有利.  相似文献   

10.
铝电解槽三维电热场的ANSYS分析   总被引:16,自引:0,他引:16  
利用有限元分析软件ANSYS,探讨了铝电解槽三维电热场数学模型,边界条件以及有限元分析的几何模型。针对贵阳铝镁设计研究院的230kA电解槽,进行了比较复杂的边界条件计算,建立了较为完善的数学模型和几何模型。在此基础上对其温度场和电场进行了三维耦合计算。为铝电解槽的优化设计提供了准确,快速且经济的研究手段。  相似文献   

11.
利用有限元分析软件ANSYS分析了在重力场作用下公路挡土墙和土体耦合作用下的力学响应,可为公路挡土墙设计和力学分析提供参考.  相似文献   

12.
该文以COMSOL Multiphysics仿真为基础,分别建立了不同几何形状的三维图像,在限制无关变量的情况下,探讨了不同形状的压电陶瓷材料发出电能的大小,为压电道路中压电单元的铺设做了辅助研究。并且做了相关的参数化分析,验证压电陶瓷发电规律随荷载的变化关系研究发现,正八棱柱体在限制其他无关变量的前提下,使用相同体积的压电材料和相同载荷的作用下发出的电能最多。  相似文献   

13.
压电式振动给料器驱动部分的ANSYS分析   总被引:1,自引:0,他引:1  
ANSYS软件分析了压电式振动给料器驱动部分,提取了固有频率和应力分析图,计算得出了幅频特性曲线。在一阶振动模态下,符合压电式振动给料器的振动规律和工作要求。  相似文献   

14.
考虑椭圆孔内空气介质对电场的作用,用复变函数的Faber级数展开方法,分析了含椭圆孔的压电材料反平面应变问题的耦合场,给出了问题的精确解。将精确解与齐次边界条件结果(近似解)进行了比较,两者的弹性均完全一致,产生弹性场奇异性的物理因素相同。  相似文献   

15.
利用阻尼谐振子量子化方法,将介观压电石英晶体等效电路量子化,根据热场动力学(TFD)理论,研究了介观压电石英晶体在热激发态下电流和电压的量子涨落.结果表明介观压电石英晶体中存在电流电压的量子涨落,量子涨落不仅和石英晶体等效电路的固有参数有关,而且还和激发量子数、压缩态的压缩度、压缩角及环境温度有关,且随温度的升高而增大,随时间按指数规律而衰减.  相似文献   

16.
近年来,压电陶瓷的应用日趋广泛.但是由于压电陶瓷片的边界条件和应力状况比较复杂,利用传统实验手段对其研究不仅耗时费力,而且其结果具有很强的局部性,因此利用大型通用仿真软件ANSYS8.0来进行计算机仿真.通过对压电陶瓷片中的耦合效应进行计算机模拟分析,得出压电陶瓷的振动状态图.实验结果表明ANSYS 8.0在处理压电耦合场这方面有很强的处理能力,大大简化了建模和计算,强大的后处理功能更是让研究者能够很直观地获得数据结果和模拟图像.  相似文献   

17.
用干涉法测量了 THAMP 晶体的全部压电系数。结果为:d_(21)=6.6,d_(22)=-4.1,d_(23)=1.3,d_(25)=-1.7,d_(14)=3.2,d_(16)=-1.2,d_(34)=2.6,d_(36)=4.0×10~(-12)C/N.  相似文献   

18.
TiO2纳微孔膜增敏的压电石英晶体传感器   总被引:1,自引:0,他引:1  
TiO2纳米粒形成的纳微多孔膜具有比表面积大、透气性好的特点.采用TiO2纳微多孔膜作为传感膜基体,可将β-环糊精有效地固定在压电石英晶体表面,固载容量约为4 μg/cm2.β-环糊精/TiO2膜修饰的压电传感器对苯、甲苯、氯苯、硝基苯、o-二甲苯、m-二甲苯、p-二甲苯气体检测时响应时间为1 min,检测浓度下限可低至40 ng/mL.TiO2纳米粒涂层为提高压电化学传感器的灵敏度和缩短响应时间提供了一种新方法.  相似文献   

19.
用晶体振荡器研究了压电石英晶体在一系列有机液体与水混合体系中的振荡性能,确定:在此类体系中的晶体频移与纯有机液体或电解质水溶液中的晶体频移变化规律不一致,系与液体的密度、粘度及介电常数有关,符合下一通式:△F=c_1d~(1/2)+c_2η~(1/2)-c_3ε_0+c_0,但电导率无显著影响.检测池外壁接地可显著降低介电常数的影响并提高频率稳定性.温度对频移的影响与体系的含水量有关.  相似文献   

20.
压电极化和半导体特性之间的耦合因具有独特的物理性质而引起了人们的关注,并由此兴起了一些新的研究领域(如压电电子学和压电光电子学).文章回顾了压电效应和压电光电子学效应对金属/半导体(M/S)和p-n结的影响,详细介绍了c轴和a轴压电电子和压电光电子学研究的基本进展和应用探索. c轴纳米结构中的压电效应是界面效应,它利用在纳米结构的局部M/S接触处或同质/异质结处产生的压电极化来控制载流子跨界面传输,并通过光感应载流子进行相应的光电过程.在非极性a轴纳米线中,外部应变感应的压电电荷沿整个极性表面分布,方向垂直于纳米线.压电半导体的电荷载流子传输过程在整个纳米结构体内受到压电效应的调节.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号