共查询到20条相似文献,搜索用时 79 毫秒
1.
针对视频行为识别任务,提出一种基于双流网络的行为识别方法.首先,该网络采用稀疏采样的策略,避免相邻帧的冗余信息对识别效果产生影响;其次,利用卷积神经网络预测光流图,提高光流图的获取效率,并降低计算量;最后,使用残差网络提取完成的视频信息,同时简化神经网络的训练过程.为验证双流行为识别网络的有效性,在两个经典数据集上进行对比实验,实验结果表明,该双流行为识别网络识别效果较好,可应用于智能视频监控、人机交互、公共安全等领域. 相似文献
2.
针对目前人工监测机动车黑烟行为费时费力的问题,文章提出一种双流卷积神经网络的机动车黑烟检测方法.该方法首先使用Vibe背景模型提取运动前景目标,然后对前景图像使用霍夫直线检测,获取候选黑烟区域,减少了路面环境和机动车车身对黑烟检测的影响.双流卷积神经网络分为空间流卷积神经网络和时间流卷积神经网络,空间流提取黑烟图像的空... 相似文献
3.
传统验证码识别方法对不同类型的验证码泛化能力和鲁棒性较差。为此,提出一种基于深度卷积神经网络的端对端验证码识别方法。首先,通过并行级联的卷积层构建简易Inception模块,替代Google-net的卷积层,在降低调整参数数量的同时,提高网络对于不同感受野尺度的适应性。同时,采用全局平均池化层替换原全连接层以防止过拟合,提高网络学习效率。其次,在训练过程中,直接利用深度网络的学习能力自动提取和识别验证码图像的字符特征信息,无须对验证码图像进行预分割,可以有效避免因字符分割引起的误差累积问题。通过对谷歌验证码、正方教务系统验证码和京东验证码的测试,结果表明本方法具有更好的泛化能力和鲁棒性,对三类验证码的识别率分别达到96.3%、98.9%和99%,比经典卷积神经网络分别提高3.14%、2.75%和1.14%。 相似文献
4.
陈宏彩 《河北省科学院学报》2017,34(2):1-6
车辆颜色是车辆中显著而稳定的特征之一,在智能交通系统中具有重要的作用。针对人工设计的特征提取方法难以有效表达复杂环境下车辆颜色特征的问题,本文在AlexNet网络结构基础上,通过调整网络结构、优化网络参数,形成了基于卷积神经网络的车辆颜色识别网络模型。该方法不需要预处理过程,能够自适应地学习车辆颜色特征表示。对常见的车辆颜色进行训练测试的实验结果表明,本文提出的方法应用到车辆颜色识别问题上具有较好的优势。 相似文献
5.
6.
7.
针对卷积神经网络(CNN)在交通标志识别过程中出现的梯度弥散而引起的识别率低的问题,给出了基于改进CNN结构的交通标志识别方法.实验结果表明:该方法能够有效提高识别精度,防止梯度弥散. 相似文献
8.
在复杂交通场景中,公安和交管部门对车型识别的实时性和精度提出了更高要求。针对当前假牌、套牌、无牌车辆处理占用大量警力、检索效率低下、非智能化等一系列问题,提出了一种基于GoogleNet深度卷积神经网络的车型精细识别方法,设计了合理的卷积神经网络滤波器大小和数目,优选了激活函数和车型识别分类器,构建了一个新的卷积神经网络轿车车型精细识别模型框架。实验结果表明,在车型精细识别测试中,所提出模型的识别率达到了97%,较原始GoogleNet模型有较大提升,而且,新模型有效地减少了训练参数的数量,降低了模型的存储空间。车型精细识别技术可应用于智能交通管理领域,具有重要的理论研究价值与实践意义。 相似文献
9.
快速、准确的放射性核素识别可有效地对放射性危险源进行及时的监测预警,对保护人们远离放射源的威胁具有重要意义。该文基于卷积神经网络研究了放射性核素γ能谱的识别。通过溴化镧能谱仪采集16种放射性核素的γ能谱数据,并通过改变放射性核素γ能谱的计数和能谱漂移程度,创建生成大量单核素和双核素γ能谱训练数据,利用自搭建的卷积神经网络开展放射性核素识别模型训练。实验采集其中9种核素及其双核素的混合能谱对核素识别模型开展验证,结果表明:在剂量率约为0.5μSv/h、测量采集时间为60 s时,模型的识别准确率可达92.63%,满足在低剂量率下对放射性核素进行快速识别筛查的需求。 相似文献
10.
为了提高卷积神经网络(CNN)的泛化性和鲁棒性,改善无人机航行时识别目标图像的精度,提出了一种CNN与概率神经网络(PNN)相结合的混合模型。利用CNN提取多层图像表示,使用PNN提取特征对图像进行分类以替代CNN内部的BP神经网络,采用均方差和降梯度法训练模型,通过将预处理的图像传输到CNN-PNN模型,对图像纹理和轮廓进行分类识别,并将此模型的仿真结果与卷积神经网络模型、卷积神经网络-支持向量机模型的结果进行对比。仿真结果表明,与其他两种模型相比,CNN-PNN模型具有更好的精准度,识别率高达96.30%。因此,CNN-PNN模型能够快速有效地识别图像,准确度和实时性较高,在图像识别等方面具有很好的应用前景。 相似文献
11.
作为深度学习的一种有效算法,深度卷积网络已成功应用在处理图像、视频和音频等领域.通过建立一卷积神经网络模型并应用于网络入侵检测,选取的卷积核与数据进行卷积操作提取特征的局部相关性从而提高特征提取的准确度.采集到的网络数据通过多层"卷积层-下采样层"的处理对网络中正常行为和异常行为的特征进行深度刻画,最后通过多层感知机进行正确分类.KDD 99数据集上的实验表明,文中提出的卷积神经网络模型与经典BP神经网络、SVM算法等相比,有效提高了入侵检测识别的分类准确性. 相似文献
12.
13.
针对磁瓦缺陷种类多样性及无法准确描述其缺陷的问题,提出一种基于卷积神经网络的缺陷检测方法。构建缺陷类型的数据集,并对数据集中的图像进行预处理;设置卷积神经网络模型参数,训练缺陷分类器;通过训练结果完成对缺陷图像的识别并标注缺陷类型。实验结果表明,该方法检测的准确性和实时性均优于传统检测方法,具有非常好的鲁棒性,为工业生产的实际应用提供了可靠的依据。 相似文献
14.
在公共安全检查领域中,研究毫米波图像目标检测的快速性和精准性的方法具有非常重要的实际应用价值。提出了基于Faster R-CNN深度学习的方法检测隐藏在人体上的危险物品。该方法将区域建议网络(region proposal network,RPN)和VGG16训练卷积神经网络模型相结合,接着通过在线难例挖掘(online hard example mining,OHEM)技术优化训练所提出的网络模型,从而构建了面向毫米波图像目标检测的深度卷积神经网络。实验结果证明所提的方法能高效地检测毫米波图像中的危险物品,并且目标检测的平均精度高达约94.66%,检测速度约为6帧/s,同时对毫米波安检系统的智能化发展有着极其重要的参考价值。 相似文献
15.
针对疲劳驾驶检测问题,提出一种以softmax损失与中心损失相结合的深度卷积神经网络算法。首先,利用含有方向的梯度直方图(histogram of oriented gridients,HOG)和级联分类器(support vector machine,SVM)算法的Dlib库中预训练的人脸检测器,来检测驾驶员的脸部区域。其次,使用级联回归(ensemble of regression trees,ERT)算法实现脸部68个关键点标定及眼睛和嘴巴的定位。最后,为了优化softmax损失在深度卷积网络分类中出现的类内间距大的问题,加入中心损失函数,提高类间差异性、类内紧密性以及驾驶员脸部疲劳状态识别准确率。在自建测试集和YawDD哈欠数据集中的实验结果显示,该方法能够准确地识别检测驾驶员疲劳表情,平均识别准确率达到98.81%。与传统的疲劳驾驶检测识别方法相比,该方法可以自动进行疲劳特征提取,并且训练准确率、检测识别率及鲁棒性得到提高;与未改进的深度卷积网络相比,检测识别的概率平均提高了约5.09%。 相似文献
16.
相较于传统烟火、烟雾传感器检测方法,基于卷积神经网络算法的烟火检测具有更高的检测精度和效率,并能提供火灾现场全局/局部详细信息。本文提出基于改进YOLOv3算法的烟火识别,应用高斯参数设计损失函数从而建立YOLOv3边界框模型,可预测边界框定位不确定性,减少负样本;为充分利用图像局部特征信息对网络结构进行改进,以实际烟火现场图片为研究对象,完成烟火识别过程计算。利用不同拍摄角度、光照条件自制火焰和烟雾数据集进行测试,结果表明,与传统YOLOv3对比,本文提出的改进YOLOv3算法平均精度提高了4.2%。研究方法将有助于提升智能烟火预警、人员救助和险情跟踪作业水平,最终提升事故灾害的应急能力。 相似文献
17.
基于卷积神经网络的小目标交通标志检测算法 总被引:1,自引:0,他引:1
PVANet(performance vs accuracy network)卷积神经网络用于小目标检测的检测能力较弱.针对这一瓶颈问题,采用对PVANet网络的浅层特征提取层、深层特征提取层和HyperNet层(多层特征信息融合层)进行改进的措施,提出了一种适用于小目标物体检测的改进PVANet卷积神经网络模型,并在TT100K(Tsinghua-Tencent 100K)数据集上进行了交通标志检测算法验证实验.结果表明,所构建的卷积神经网络具有优秀的小目标物体检测能力,相应的交通标志检测算法可以实现较高的准确率. 相似文献
18.
针对牲畜面部识别在养殖行业广泛需求的问题, 提出一种基于卷积神经网络的猪脸特征点检测方法, 解决了猪脸特征点难检测的问题. 首先, 采集猪面部数据并进行特征点标注, 使用新的采集方法以解决猪口部通常不可见的问题; 其次, 对猪脸数据和人脸数据进行结构计算, 匹配相似度较高的猪脸和人脸, 构建猪脸人脸匹配数据集; 再次, 利用匹配数据集训练TPS(thin plate spline)形变卷积神经网络, 得到形变后的猪脸数据集以适配人脸特征点检测模型; 最后, 使用形变猪脸数据集对人脸特征点检测神经网络模型进行微调, 得到猪脸特征点检测模型. 实验结果表明, 用该方法进行猪脸特征点检测, 错误率仅为5.60%. 相似文献
19.
利用卷积神经网络在图像识别方面的优势,提出了一种基于深度卷积神经网的哈萨克手写字母识别方法(DCNN-KLR),成功建立了一种哈萨克手写文字识别模型。 与传统的方法(SVM+HOG)相比,不仅训练方便、速度快,而且提高了哈萨克手写文字的识别率。在5708个数据样本上进行训练和测试,将样本分为33类和100类,正确识别率分别达到93.29%和92.38%。 相似文献
20.
为了实现对宫颈细胞图像相近类别的准确自动分类,提出了一种双流卷积神经网络算法。算法以DenseNet121网络和Xception网络为基础并对其进行改进,以提高算法对宫颈细胞进行细粒度分类的识别准确率。首先,在DenseNet121中引入DropBlock模块进行网络正则化,用于提高模型的泛化能力;其次,在Xception中加入SE(squeeze-and-excitation)模块调整通道权重,以增强网络提取有效特征的能力;最后,将两个网络输出的特征图进行拼接构建双流网络,来获取宫颈细胞更全面的特征信息。实验结果表明,该网络在Herlev数据集以及SIPaKMeD数据集上各性能指标都表现良好,且都达到了99%的准确率,优于改进融合前的网络,提出的算法在宫颈细胞的细粒度分类中具有较高识别率。 相似文献