首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
首次合成了葡萄糖铁复合物GCFe,以GCFe为前驱体,采用原位煅烧法制备了纳米Fe_3O_4@C复合材料.利用TEM、IR、XRD、XPS、Raman光谱等技术,对该复合材料的结构进行了表征.作为锂离子电池负极,Fe_3O_4@C复合材料呈现出优异的倍率性能和循环稳定性,在电流密度为2 000 mAh·g~(-1)时,放电比容量为825.4 mAh·g~(-1),经过180次循环后,无明显的容量衰减.  相似文献   

2.
以K2SnO3为原料,采用简单的水热反应,通过基于静电引力的自组装机制,制得石墨烯包覆SnO2空心球的复合材料.采用SEM、TEM、XRD、N2吸附等温线研究了复合材料的形貌和结构;采用电化学方法研究了复合材料的锂离子电池负极性能.结果表明,复合材料为石墨烯包覆的直径约200~300nm的SnO2空心球,比表面积为140.1 m2·g-1.当放电电流密度为158m A·g-1时,充电比容量为425 mAh·g-1,库伦效率保持为92%以上,复合材料具有良好的循环性能.  相似文献   

3.
利用简单的一步水热法制备高性能的镍掺杂SnO2 纳米微球锂离子电池负极材料. 利用扫描电镜(scanning electron microscope, SEM)、高分辨率透射电镜(high resolution transmission electron microscope, HRTEM)、拉曼分析仪、X射线衍射(X-ray diffraction, XRD)仪以及电化学性能测试仪器(如蓝电测试系统、电化学工作站)分别研究了镍掺杂对SnO2 微观形貌、组成、结晶行为及电化学性能的影响, 并得到了最佳反应时间. 实验结果表明:与纯SnO2相比, 镍掺杂SnO2 纳米微球表现出了更好的倍率性能和优异的循环性能. 特别地, 反应时间为12 h 的5 % 镍掺杂SnO2 在100 mA/g 电流密度下的首次放电比容量为1 970.3 mA·h/g,远高于SnO2 的理论容量782 mA·h/g. 这是因为镍掺杂可适应庞大的体积膨胀, 避免了纳米粒子的团聚, 因此其电化学性能得到了显著改善.  相似文献   

4.
利用水热法合成了SnO2-si/c复合材料,利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了材料的物相和电极的微结构,结果表明,合成的复合材料中SnO2颗粒平均尺寸为5.3nm,碳的加入抑制了活性中心Si和SnO2在循环过程中较大的结构变化,且SnO2和Si颗粒均匀地分散在碳的网络结构中,增加了复合材料的电接触...  相似文献   

5.
6.
7.
CuO掺杂纳米SnO2锂离子电池负极材料的合成与电化学性能   总被引:1,自引:0,他引:1  
以SnCl4·5H2O、Cu(NO3)2·3H2O和NH3·H2O为原料,采用化学共沉淀法制备了CuO掺杂的纳米SnO2粉末.运用X射线衍射、扫描电镜等手段对合成粉末进行了表征.将合成粉末作为锂离子电池负极材料,研究了其充放电容量、循环性能和交流阻抗等电化学性能.结果表明:采用化学共沉淀法可以得到平均粒度为87 nm的CuO掺杂的纳米SnO2粉末;在SnO2中掺入CuO,并没有改变SnO2的结构,但能够有效抑制SnO2粒子的长大;CuO掺杂的纳米SnO2粉末的可逆容量可以达到752 mA·g-1,经60次循环后,CuO掺杂的纳米SnO2粉末的容量保持率分别为93.6%,优于纳米SnO2 (92.0%),掺杂CuO改善了纳米SnO2的循环性能.  相似文献   

8.
分别使用十二烷基苯磺酸钠(SDBS)作为表面活性剂以及十二烷基苯磺酸钠(SDBS)和聚乙烯吡咯烷酮(PVP)作为双表面活性剂,采用水解法制备出SnO_2纳米材料,并研究了SnO_2纳米材料的形貌和作为锂离子电池负极时的电化学性能之间的关系.结果表明,所制备的SnO_2纳米颗粒均为球形,大小为45~75 nm,在双表面活性剂的调控下所制备的SnO_2纳米材料体积较大.所制备的SnO_2纳米颗粒均为具有金红石结构的锡石型,属于四方晶系.恒电流充放电循环测试结果表明,SnO_2纳米颗粒具有较高的放电比容量,首次放电比容量大约为1400~1600 m Ah/g,但是循环稳定性较差,循环5次以后样品的放电比容量衰减至400~700 m Ah/g.总之,双表面活性剂调控下,7h煅烧制备得到的SnO_2纳米材料相对较好,具有相对较大的比容量和相对较小的阻抗.  相似文献   

9.
研究了炭化温度、升温速率以及碱处理浓度对稻壳制备锂离子电池负极材料结构及充放电性能的影响。通过差热热重分析曲线(DT-TGA)、元素分析、X射线粉末衍射(XRD)以及电化学性能测试手段对材料进行了表征。结果表明:在最佳实验条件下,材料首次充电容量为678mA.h/g,首次放电容量为239mA.h/g,循环10次的容量保持率为86.2%。  相似文献   

10.
研究了一种新型的垃圾箱来收集废旧烟头,并将收集的烟头通过一步煅烧的方法制得多孔的无定形炭,将其作锂离子电池负极材料.对所得的材料进行X-射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼(Raman)和投射扫描电子显微镜(TEM)表征.结果表明,该材料在0.5C的电流密度下,在循环100圈后其容量能够保持在240(mA·h)/g,具有实际应用的潜质.该研究有希望解决废弃烟头的回收利用问题.  相似文献   

11.
使用基于平面波展开的第一原理赝势法,研究了锂离子电池负极材料Li2MgSi在各种脱锂量下的锂脱嵌形成能、相应的体积变化、能带结构、电子态密度以及电荷密度分布.计算结果表明:脱锂量越大需要的能量越大,随脱锂量的变化,平均一个锂的脱嵌形成能在-1.21~-1.61 eV之间.脱锂过程中,体积先膨胀后收缩,整个过程中体积变化很大,是导致材料循环性能较差的重要原因.在脱锂过程中材料显示了由半导体性到金属性又到半导体性的特征.  相似文献   

12.
锂离子电池氧化物负极材料的研究   总被引:6,自引:1,他引:6  
采用氨解法制备了SnO,Sb2O3,GeO23种氧化物粉末,将其分别作为锂离子电池负极材料的活性物质,利用恒电流电池测试仪研究其电化学性能·研究发现,这3种活性物质有较高的电化学容量,其首次放电容量分别为1520mAh/g(GeO2),820mAh/g(Sb2O3),1040mAh/g(SnO);首次充电容量分别为800mAh/g(GeO2),520mAh/g(Sb2O3),800mAh/g(SnO)·同时还发现其不可逆容量损失也较大,讨论了产生这一结果的可能原因,提出了减少不可逆容量损失的办法·  相似文献   

13.
采用溶胶-凝胶法合成前驱物Sn(OH)4胶体,在不同温度下加热分解,得到一系列纳米SnO2试样.通过恒流充放电和循环伏安(CV)实验,表征了不同结构和颗粒度的纳米SnO2锂二次电池负极材料的电化学性能.结果表明,纳米SnO2试样的电化学性能对热处理温度很敏感,800℃热分解试样的电化学性能较好.  相似文献   

14.
LiMn2O4以其价格低、电位高、环境友好、安全性能高等优点,成为最有希望取代LiCoO2的主流材料之一.LiMn2O4的生产制备方法众多, 文中详细介绍了锰酸锂的晶体结构特点,阐述了锰酸锂的各种制备方法,探讨了采用不同的原料、不同的制备方法对提高锰酸锂性能的差异.从电解液方面、尖晶石锰酸锂晶体结构层面分析了其容量衰减的原因,希望能够为锰酸锂材料的研究者提供借鉴,为其生产提供理论依据.  相似文献   

15.
锂离子电池负极材料Li2.5Cu0.5N的Li脱嵌性质   总被引:1,自引:0,他引:1  
使用基于平面波展开的第一原理赝势法,计算了锂离子电池非碳基负极材料Li2.5Cu0.5N在各种脱锂量下的Li脱嵌形成能以及相应的体积变化,讨论了脱锂前后材料的电荷密度,电子状态密度等电子性质.计算表明,Li2.5Cu0.5N晶体中LiN层的锂的脱出能要比LiCu层的锂小得多,即LiN层中的锂更容易脱嵌.结果还表明,各种脱锂量的Li脱嵌能大致在-2.72~-4.08 eV/Li之间.当脱锂量小于30%,材料的体积变化较小,随着脱锂量的增大,材料的体积变化较大.  相似文献   

16.
为提高动力电池的能量密度,以树叶模板法制备了具有多孔分级结构的Mn_2O_3材料.通过X射线电子衍射技术和扫描电子显微技术分别对材料的晶体结构和表面形貌进行了研究,结果表明制备的G-Mn_2O_3材料具有丰富的孔结构和较小的一次粒径.将制备材料作为锂离子电池和钠离子电池负极材料应用,并对材料的电化学性能进行了研究,与粉末Mn_2O_3材料相比,模板法制备的Mn_2O_3材料在锂离子电池中具有优异的电化学性能.  相似文献   

17.
采用乳液法制备了Ni(OH)2前驱体,在空气氛中、500℃下煅烧2h得到NiO材料,采用XRD、SEM、充放电测试和循环伏安实验对其结构、形貌和性能进行表征.结果表明,粒状结构的纳米NiO材料具有良好的循环性能,40次循环内可逆比容量无明显衰减.第40次循环的可逆比容量为400mA.h/g,库仑效率为95%.  相似文献   

18.
SnO2/ graphite nanocomposites with different SnO2 contents were successfully prepared by a co-precipitation method.The nanocomposites, used as the anode material for lithium-ion batteries( LIBs),were characterized by X-ray diffraction( XRD),thermogravimetric analysis( TGA), and transmission electron microscopy( TEM). The SnO2 particles had the average size of about 15 nm and their distribution on graphite matrix much depended on the contents of SnO2 in the nanocomposites. The galvanostatic charge-discharge cycles were used to investigate the effects of SnO2 contents on the electrochemical performance of these composites. The results show that the initial specific capacities increase with the SnO2 contents. However,the cyclic stabilities are determined by the distribution of SnO2 particles in composites. For55% by weight SnO2/ graphite composites, the initial specific capacity is 740 m Ah g- 1and 70% of the initial specific capacity( 518 m Ah·g- 1) can still be retained after 50 charge-discharge cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号