首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
对于n阶半正定矩阵A,B的初等和完全对称函数,得到如下的不等式Er[(AB)m]≤Er(AmBm),hr[(AB)m]≤hr(AmBm),Er[AαB1-α]≤[Er(A)]α[Er(B)]1-α,hr[AαB1-α]≤[hr(A)]α[hr(B)]1-α.其中,m是任意正整数,0≤α≤1,Er(A),hr(A)分别为半正定矩阵A的r阶初等和完全对称函数.当A,B都是正定矩阵时,有E2r(A#B)≤Er(A)Er(B),h2r(A#B)≤hr(A)hr(B).其中,A#B=A1/2(A-1/2BA-1/2)1/2A1/2称为A与B的几何平均矩阵.  相似文献   

2.
对于n阶半正定矩阵A,B的初等和完全对称函数,得到如下的不等式,Er[(AB)^m]≤Er(A^mB^m),hr[(AB)^m]≤(A^mB^m),Er[A^aB^1-a]≤[Er(A]^a[Er(B)]^1-A,HR[A^aB^1-a]≤[hr(A)]^a[hr(B)]^1-a.其中,m是任意正整数,0≤a≤1,Er(A),hr(A)分别为半下定矩阵A的r阶初等和完全对称函数。当A,B都是正定矩阵时,有E^2r(A#B)≤Er(A)Er(B),h^2r(A#B)≤hr(A)hr(B),其中,A#B=A^1/2BA^-1/2)^1/2A^1/2称为A与B的几何平均矩阵。  相似文献   

3.
对于n阶半正定Hermiter矩阵A和B及自然数m,本文证明了不等式:tr(A~(1/2)BA~(1/2))~(m/2)(B~(1/2)AB~(1/2))~(m/2)≤tr(AB)~m≤tr(AB~2A)~(m/2)特别当m=2~K时,Bellman猜想成立,即有tr(AB)~(2k)≤trA~(2k)B~(2k)  相似文献   

4.
下述由王伯英[1 ] 和詹兴致[2 ] 建立的关于半正定矩阵A和B的Hadamard乘积偏序(C D) T(A B) - 1 (C D)≤ (CTA- 1 C) (DTB- 1 D)被S .Liu[3] 推广到半正定的情况 .我们给出了Khatri Rao乘积的相关偏序  相似文献   

5.
<正> 最近[1]证明了,当A、B同为实对称矩阵时,有t_r[(AB)~2~m(AB)~τ~(2m)]≤t_r[(AB)(AB)~T]~(2m)≡t_r(A~2B~2)~2~m (1)这里m为任意自然数(见[1]的定理3的b)[1]依(1)提出一个猜想:  相似文献   

6.
1980年,Bellman,R.在文〔1〕中证明了下面的不等式 tr(AB)≤{tr(A~2)tr(B~2)}~(1/2) (1) 2tr(AB)≤tr(A~2)+tr(B~2) (2)这里A,B是同阶正定矩阵。 本文得到了与(1)、(2)类似的不等式 tr((AB)~m)≤{tr(A~(2m))tr(B~(2m))}~(1/2) (3) 2tr((AB)~m)≤tr(A~(2m))+tr(B~(2m)) (4) 其中A、B是同阶实对称矩阵,m=2~k(k为非负整数)  相似文献   

7.
Fuzzy亚对称方阵的亚可实现问题及亚可实现条件   总被引:4,自引:1,他引:3  
在 [0 ,1]格上讨论 :已知n×n阶Fuzzy矩阵B ,问是否存在Fuzzy矩阵A =(aij) n×m 使B =A AST,其中 ,AST =(aklST) m×n,aSTkl =an-l 1,m -k 1,k=1,2 ,… ,m ;l =1,2 ,… ,n , 为Fuzzy矩阵间的max min合成算子 .如果存在使B =A AST 成立的Fuzzy矩阵A ,则称B是亚可实现的 .进一步设w(B)=min{m|A是n×m阶Fuzzy矩阵且使B =A AST} ,称w(B)为B的亚容度 .将证明存在使B =A AST 成立的Fuzzy矩阵A的充要条件是B =BST;进一步 ,w(B)≤ 2n2 - 1.  相似文献   

8.
定理设 A 为正规矩阵,则以下各种情况等价:(1)A 是正定正规矩阵.(2)R(A)是正定(对称)矩阵.(3)A 的任一特征值的实部大于零,即 Re(λ(A))>0.(4)(?)(?)表示 n 阶矩阵 A 的任一 k 阶主子阵,1≤i_1|Im(λ(B))|;Re(λ(B)),Im(λ(B))  相似文献   

9.
本文首先讨论正规矩阵为亚正定的特征;然后论述了亚正定矩阵的一般积、Kronecker积以及Hadamard积仍为亚正定的条件。定义1 设A为实方阵,对任意非零向量x,有x Ax>0;称A为亚正定的。定义2 设A∈R~(n×n),A~ΓA=AA~Γ;则称A为正规矩阵。定义3 A、B为同阶实方阵,A可逆,方程|λA-B|=0的解为B相对A的特征根,显然它们是A和B确定的。定义4 A=(α)(?)×,B=(b_i)_m×m都是实阵;则m·n阵方阵(α_(ij)·B)_(m×m)为A与B的Kronecker积,记为AB。  相似文献   

10.
如果λ_1,…,λ_n是对称矩阵A的特征值,P. Tarazaga证明了|tr(A)/n-λ_i|≤[(n-1)/n(‖A‖_F~2-tr(A)~2/n)]~(1/2)对λ_i,i=1,…,n。本文中得到了一个等式成立的充分必要条件,由此给出一类特殊对称矩阵特征值的计算方法,而且证明了下面的定理:如果对称正定矩阵A仅有k个特征值大于或等于αtr(A),0<α<1,则tr(A)/‖A‖_F≥P_k(α)~(1/2),其中P_k(α)~(-1)=[1-(k-1)α]~2+(k-1)α~2,进而得到正定对称矩阵每一个特征值的上界估计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号