共查询到20条相似文献,搜索用时 31 毫秒
1.
为有效利用决定空间中的信息、提高收敛速度与准确度,提出了基于决策空间划分模型的多目标进化算法.该算法将决策空间划分成多个子决策空间并在每个子决策空间内映射出一个超球体,运用某一多目标进化算法完成超球体内个体的1轮次进化,基于粒子群优化算法的粒子移动机制实现超球体间的信息共享、引导超球体质心向最优解集方向移动.对8个测试问题的实验结果表明:基于决策空间划分模型的多目标进化算法在收敛精度和收敛稳定性方面比FastPGA,MOCell,NSGA-Ⅱ和SPEA2算法表现出更好的性能. 相似文献
2.
近年来,多目标优化问题求解已成为演化计算的一个重要研究方向。而基于Pareto最优概念的多目标演化算法则是当前演化计算的研究热点。多目标演化算法的研究目标是使算法种群决速收敛并均匀分布于问题的非劣最优域。介绍了多目标优化的概念,在比较分析了目前较成功的多目标演化算法的基础上,提出了一种新的解决数值优化问题的稳态淘汰演化算法。 相似文献
3.
求解约束优化问题的一种新的进化算法 总被引:5,自引:0,他引:5
分析了现有的约束优化进化算法的一些不足之处,提出了一种处理约束优化问题的新算法。新算法将多目标优化思想与全局搜索和局部搜索机制有机地结合起来;在全局搜索过程中,作为一种小生态遗传算法,排挤操作利用Pareto优劣关系比较个体并接受具有相似性的父代个体和予代个体中的优胜者;在局部搜索过程中,首先对局部群体中的个体赋予Pareto强度,然后根据Pareto强度选择个体。通过一个复杂高维多峰测试函数验证了新算法的有效性。 相似文献
4.
基于Pareto排序算法的多目标演化算法是多目标演化算法所采用的重要方法,本文叙述了多目标演化算法(MOEAs)的有关概念,在分析已有算法的一些性能和特征的基础上,结合演化算法的有关概念,重点基于Pareto排序算法分析了影响多目标演化算法性能的两大方面:求解过程中解集合的多样性、均匀性分布的保持与维护以及解的收敛性,分析了MOEAs设计中需要注意的策略问题以及今后研究的重点. 相似文献
5.
为了使公交车辆的发车间隔得到优化,根据客流量的变化,建立了以乘客和公交企业运营费用最小为目标的公交车辆发车间隔优化模型,并采用一种多目标演化算法(MOPEA)来求解模型.该算法通过粒子系统从非平衡状态达到平衡状态的理论来定义Rank函数,从而使得所有个体在每次迭代过程中均能参与杂交、变异等演化操作,最终求得发车间隔的全局最优解,从而避免传统演化算法中出现的陷入问题的局部解的现象.同时,保留了目标函数的多样性,使相向的多目标优化问题得到了一个折中的最优解,即Pareto最优解.最后通过实例验证了该算法比传统演化算法更具优越性. 相似文献
6.
针对带服务时间窗的多式联运方案优化问题,考虑运输总成本和运输过程中不准点导致的延误总时间两个目标,建立了多时间窗多目标多式联运数学模型,引入基于分目标的优势排序数和总优势排序数概念,证明了优势排序数的若干重要性质,依据总优势排序数的性质构建适应度函数,设计了一种基于优势排序数及寻求Pareto最优解的多目标离散粒子群算法,案例结果表明了模型和算法的可行性和有效性,算法给出的Pareto最优解也从实践角度证明了总优势排序数的性质. 相似文献
7.
DNA computing is a new vista of computation, which is of biochemical type. Since each piece of information is encoded in biological sequences, their design is crucial for successful DNA computation. DNA sequence design is involved with a number of design criteria, which is difficult to be solved by the traditional optimization methods. In this paper, the multi-objective carrier chaotic evolution algorithm (MCCEA) is introduced to solve the DNA sequence design problem. By merging the chaotic search base on power function carrier, a set of good DNA sequences are generated. Furthermore, the simulation results show the efficiency of our method. 相似文献
8.
DNA computing is a new vista of computation, which is of biochemical type. Since each piece of information is encoded in biological sequences, their design is crucial for successful DNA computation. DNA sequence design is involved with a number of design criteria, which is difficult to be solved by the traditional optimization methods. In this paper, the multi-objective carrier chaotic evolution algorithm (MCCEA) is introduced to solve the DNA sequence design problem. By merging the chaotic search base on power function carrier, a set of good DNA sequences are generated. Furthermore, the simulation results show the efficiency of our method. 相似文献
9.
P systems based multi-objective optimization algorithm 总被引:1,自引:0,他引:1
Based on P systems, this paper proposes a new multi-objective optimization algorithm (PMOA). Similar to P systems, PMOA has a cell-like structure. The structure is dynamic and its membranes merge and divide at different stages. The key rule of a membrane is the communication rule which is derived from P systems. Mutation rules are important for the algorithm, which has different ranges of mutation in different membranes. The cooperation of the two rules contributes to the diversity of the population, the conquest of the muhimodality of objective function and the convergence of algorithm. Moreover, the unique structure divides the whole population into several sub populations, which decreases the computational complexity. Almost a dozen popular algorithms are compared using several test problems. Simulation results illustrate that the PMOA has the best performance. Its solutions are closer to the true Pareto-optimal front 相似文献
10.
P systems based multi-objective optimization algorithm 总被引:2,自引:0,他引:2
Based on P systems, this paper proposes a new multi-objective optimization algorithm (PMOA). Similar to P systems, PMOA has a cell-like structure. The structure is dynamic and its membranes merge and divide at different stages. The key rule of a membrane is the communication rule which is derived from P systems. Mutation rules are important for the algorithm, which has different ranges of mutation in different membranes. The cooperation of the two rules contributes to the diversity of the population, the conquest of the muhimodality of objective function and the convergence of algorithm. Moreover, the unique structure divides the whole population into several sub populations, which decreases the computational complexity. Almost a dozen popular algorithms are compared using several test problems. Simulation results illustrate that the PMOA has the best performance. Its solutions are closer to the true Pareto-optimal front 相似文献
11.
给出了一类定义在离散时间(环境)空间上、自变量的维数随环境可发生改变的一类动态多目标优化问题(DDMOP)的新解法.该方法把DDMOP转化成了两个目标的动态多目标优化问题,在一种环境变化判断规则下提出了解DDMOP的一种新进化算法(DDMOEA).计算机仿真表明,新算法能有效跟踪并求出DDMOP在不同环境下数量较多、质量较好且分布均匀的Pareto最优解. 相似文献
12.
将差分进化算法应用于图像聚类问题,对问题进行实数编码,采用群体智能模式实现问题解的搜索.利用差分进化算法的差分变异操作和群体分布特性有效提高算法的搜索能力,采用贪婪选择操作和竞争生存策略实现群体内个体之间的相互合作与竞争,降低了进化操作的复杂性,并通过仿真实验证明了该算法的有效性. 相似文献
13.
A new evolutionary algorithm for function optimization 总被引:26,自引:1,他引:26
A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints.
This algorithm has been used to a series of standard test problems and exhibited good performance. The computation results
show that its generality, precision, robustness, simplicity and performance are all satisfactory.
Foundation item: Supported by the National Natural Science Foundation of China (No. 69635030), National 863 High Technology
Project of China, the Key Scientific Technology Development Project of Hubei Province.
Biography: GUO Tao(1971-), male, Ph D, research interests are in evolutionary computation and network computing. 相似文献
14.
将进化规划算法应用于图像聚类问题,对问题的解进行符号编码,采用群体智能模式实现问题解的搜索.利用进化规划算法的变异算子和选择算子可以有效提高算法的全局搜索能力,采用高斯变异算子保证了优秀解的多样性,降低了进化操作的复杂性.仿真实验证明基于进化规划算法的图像聚类算法具有可行性和准确性. 相似文献
15.
16.
一类针对带约束优化问题的进化规划算法 总被引:1,自引:0,他引:1
提出了一种适用于求解带约束优化问题的进化规划方法,其中关键的变异算子采用基于行为的架构,事先设计一系列子变异算子,如使得个体适应度函数值趋向最小方向的变异算子、逃避约束方向的变异算子、种群总体平均适应度函数值趋向最小方向的变异算子等,通过加权平均的方法决定总变异方向.结合小生境技术及最优个体保存的选择策略,该算法能在同时保证种群的多样性和个体的全局最优性的情况下快速地求得带约束条件下的最优解.仿真结果表明,该进化规划算法是可行的. 相似文献
17.
Traditional Evolutionary Algorithm (EAs) is based on the binary code, real number code, structure code and so on. But these
coding strategies have their own advantages and disadvantages for the optimization of functions. In this paper a new Decimal
Coding Strategy (DCS), which is convenient for space division and alterable precision, was proposed, and the theory analysis
of its implicit parallelism and convergence was also discussed. We also redesign several genetic operators for the decimal
code. In order to utilize the historial information of the existing individuals in the process of evolution and avoid repeated
exploring, the strategies of space shrinking and precision alterable, are adopted. Finally, the evolutionary algorithm based
on decimal coding (DCEAs) was applied to the optimization of functions, the optimization of parameter, mixed-integer nonlinear
programming. Comparison with traditional GAs was made and the experimental results show that the performances of DCEAS are
better than the tradition GAs.
Foundation item: Supported by the National Natural Science Foundation of China (No. 69703011)
Biography: Dong Wen-yong (1973-), male Ph. D. candidate, research direction: parallel algorithms, evolutionary computation,
computer simulation. 相似文献
18.
Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied
and discussed. However there are still few literatures discussing the roles of search and selection operators in MOEAs. This
paper studied their roles by solving a case of discrete Multi-objective Optimization Problem (MOP): Multi-objective TSP with
a new MOEA. In the new MOEA, We adopt an efficient search operator, which has the properties of both crossover and mutation,
to generate the new individuals and chose two selection operators: Family Competition and Population Competition with probabilities
to realize selection. The simulation experiments showed that this new MOEA could get good uniform solutions representing the
Pareto Front and outperformed SPEA in almost every simulation run on this problem. Furthermore, we analyzed its convergence
property using finite Markov chain and proved that it could converge to Pareto Front with probability 1. We also find that
the convergence property of MOEAs has much relationship with search and selection operators.
Foundation item: Supported by the National Natural Science Foundation of China (60133010,70071042,60073043)
Biography: Yan Zhen-yu( 1977-), male, Master student, research interests: computational intelligence, evolutionary computation. 相似文献
19.
随着电子芯片技术的发展,电路系统不断向高集成度和智能化发展。在复杂电磁场环境的各种干扰下,对信息化电子系统的稳定性和可靠性要求越来越高,电子系统的可靠性及自主容错能力成为电路设计所面临的新挑战。为提高恶劣情况下电路的抗干扰能力,提出将分析得到的演化效率因素作为算法的影响因子,引入到演化算法的适应度函数中,对算法进行提高和改进。研究结果表明,在单点短路和断路故障仿真实验中,引入演化效率因子的演化算法的平均无故障概率分别为0.754和0.853。与传统的演化算法相比,两者分别提高了16.4%和14%;与自适应算法相比,两者分别提高了6.7%和5%,证明在受扰或局部损伤的情况下,引入演化效率因子能够有效提升电路系统的鲁棒性及容错抗扰能力。研究结果对改进电路设计的强化及完善有一定的参考价值。 相似文献
20.
用粒子群优化算法求解多目标问题容易陷入局部最优,为此本文提出了一种分组粒子群多目标优化算法。该算法将决策空间分成Q个子空间,每个子空间随机的分配N个粒子,这Q个粒子群分别在各自的空间进行独立搜索。为保证每个种群的搜索多样性和遍历性,用混沌序列对各组粒子位置进行初始化,同时对各组进行基于聚集距离的粒子择优进化。由典型多目标函数的优化实验结果表明,经过适当的分组,该算法能迅速逼近非劣最优解集,效果令人满意。 相似文献