共查询到18条相似文献,搜索用时 102 毫秒
1.
基于神经网络的入侵检测模型 总被引:10,自引:0,他引:10
对当前网络上的入侵和入侵检测技术进行了分析,论述了神经网络应用于入侵检测系统中的优势,给出了一个基于神经网络的入侵检测的实施模型。 相似文献
2.
基于进化神经网络的入侵检测方法 总被引:13,自引:3,他引:13
将神经网络与遗传算法结合,提出入侵检测的进化神经网络方法,它是个高效并行非线性动态处理系统,可以满足实时处理要求·首先用遗传算法优化神经网络结构,然后用优化的神经网络进行入侵检测预测、预警·用进化神经网络方法不断演化,寻找最优的网络结构·当进化神经网络学会系统正常工作模式后,能够对偏离系统正常工作的事件做出反应,进而可以发现一些新的攻击模式·实验表明预警率是很高的 相似文献
3.
与预防攻击为主的安全方案不同,入侵容忍系统可以在受到攻击之后仍能提供正常连续的服务,作者从入侵容忍技术的原理入手,提出了一个入侵容忍模型,在该模型中采用了基于神经网络的入侵检测技术作为触发器,通过对该模型的工作流程和性能进行分析得出它具有很好的自适应性、安全性和弹性. 相似文献
4.
一种基于CIDF的入侵检测系统模型 总被引:4,自引:0,他引:4
给出了一种基于CIDF的入侵检测模型,该模型同时运用异常检测与特征检测,能够较好地检测到各种攻击,而且可以在有噪声数据的情况下对系统进行训练,克服了一般的基于异常检测的入侵检测系统要求在无噪声数据的情况下进行训练的缺陷。通过CIDF通信协议,入侵检测系统还可以与其他的入侵检测系统通信,实现多个入侵检测系统协同工作,大大提高了入侵检测的效率和成功性。 相似文献
5.
针对传统的网络安全防范技术存在的缺陷和入侵检测在动态安全模型中的重要地位和作用,提出了基于模糊理论、神经网络和遗传算法结合的新方法--动态模糊神经网络,并且给出基于动态模糊神经网络的入侵检测系统构建体系.该系统在实际应用中收到了较好的效果. 相似文献
6.
入侵检测技术是解决网络安全的一种有效手段。文中提供一个基于规则和神经网络系统的入侵检测模型。主要思想是利用神经网络的分类能力来识别未知攻击,使用基于规则系统识别已知攻击。神经网络对DOS和Probing攻击有较高的识别率,而基于规则系统对R2L和U2R攻击检测更有效。因此该模型能提高对各种攻击的检出率。最后对模型存在的问题及入侵检测技术的发展趋势做了讨论。 相似文献
7.
本文是采用改进BP神经网络的拟牛顿算法,并利用matlab提供的神经网络工具箱构建BP神经网络入侵检测系统。此算法的优越性在于收敛速度比较快,特别对于较高维数的问题。测试后证明所构建的系统是可行的,能够检测到新的入侵行为。 相似文献
8.
一种分布式入侵检测系统的设计 总被引:1,自引:0,他引:1
首先简要概述了入侵检测技术的现状、分析了现有技术的优缺点,然后提出一种基于部件的分布式入侵检测系统,它集成了误用检测和异常检测方法。文章最后设计了两种改进的分析方法。 相似文献
9.
介绍了神经网络技术在入侵检测上的应用现状及BP神经网络学习算法的原理,开发了一个基于神经网络的入侵检测系统的原型. 相似文献
10.
针对普通BP神经网络算法学习收敛速度慢、易造成局部极小的问题,提出一种改进的BP神经网络入侵检测方法,其采用拟牛顿的方法进行学习,即对目标矩阵求二阶导数.运用该方法能够有效提高学习速度,消除局部极小.仿真结果表明,改进的BP神经网络入侵检测方法收敛速度快,比标准的BP入侵检测方法误检率低,能够很好地提高学习效率,更加有效地检测攻击行为. 相似文献
11.
作为深度学习的一种有效算法,深度卷积网络已成功应用在处理图像、视频和音频等领域.通过建立一卷积神经网络模型并应用于网络入侵检测,选取的卷积核与数据进行卷积操作提取特征的局部相关性从而提高特征提取的准确度.采集到的网络数据通过多层"卷积层-下采样层"的处理对网络中正常行为和异常行为的特征进行深度刻画,最后通过多层感知机进行正确分类.KDD 99数据集上的实验表明,文中提出的卷积神经网络模型与经典BP神经网络、SVM算法等相比,有效提高了入侵检测识别的分类准确性. 相似文献
12.
神经网络在入侵检测中的应用 总被引:3,自引:0,他引:3
当前的入侵检测技术主要有基于规则的误用检测和基于统计的异常检测。提出一个基于神经网络的入侵检测系统模型,利用神经网络的自学习、自适应的特性,快速识别和对噪声数据的处理能力,使入侵检测系统能够较好地识别新的攻击。 相似文献
13.
李钢 《吉首大学学报(自然科学版)》2008,29(4):58-61
阐述了入侵检测技术的发展与现状,对目前所采用的入侵检测技术及其特点进行了分析比较,探讨了将神经网络应用于网络入侵检测的可行性.结合网络入侵和主机入侵方面的检测能力,构建了基于智能体的分布式入侵检测系统的体系结构模型.重点讨论了神经网络入侵检测算法,提出了较优的变速度回归神经网络检测算法. 相似文献
14.
李钢 《安庆师范学院学报(自然科学版)》2008,14(3)
入侵检测是一种积极主动的安全防护技术。入侵检测系统可分为基于主机的和基于网络的两种。和防火墙等其它安全产品相比,他们还存在很多缺陷。人工神经网络通过对大量训练样本的学习,可以获得正常和异常数据的分类知识,从而能够对入侵的异常数据进行识别。为此给出了基于BP网络的入侵检测系统,从试验数据发现,该系统不仅在测试阶段的检全率和误检率达到了令人满意的效果,而且在实时检测中,由于计算量不大,对于攻击和扫描的反应速度快,只要建立相应的报警机制,一旦检测到可能的入侵行为,系统就会立即通知管理员采取适当的措施,保护系统安全。 相似文献
15.
张雪芹;顾春华 《华南理工大学学报(自然科学版)》2010,38(1)
在网络入侵检测中,样本数据的特征维数较高,而冗余特征的存在使系统的存储负担加重,分类器性能降低。本文提出一种基于Fisher Score和SVM的特征重要性度量和提取方法,针对KDD'99网络入侵检测数据集,应用该方法得到了混合攻击和单一攻击模式下的特征重要度排序,选取重要特征建立SVM入侵检测分类器,结果表明分类器精度与使用全部特征构建的SVM分类器相当,训练和测试时间有显著降低。 相似文献
16.
针对经典BP神经网络在入侵检测应用中收敛速度慢、学习性能不够理想等缺陷,以消除原始数据中的冗余信息、提升入侵检测算法的检测性能为目的,综合采用主成分分析法和附加动量法,提出了一种基于PCA-BP神经网络的入侵检测方法,通过对数据的特征选择和对网络的权值修正,对经典BP神经网络算法进行了拓展和改进。首先对网络数据集进行标准化处理,并对处理后的数据集进行降维处理以确定主分量的特征数,最后将处理完成后的数据集输入到改进的BP神经网络中进行检测。通过在KDD Cup 1999网络数据集上的大量实验证明,该方法在大部分网络环境,尤其是在训练样本较为充足的网络环境中时,系统模型的收敛性、检测效率和检测准确率上均优于经典BP神经网络方法和半监督入侵检测方法。 相似文献
17.
与广泛使用的BP网络模型相比,径向基函数神经网络具有训练时间短且不易收敛到局部最小的优点.将3种径向基神经网络应用到入侵检测中,用于入侵模式识别的分类和预测,从而提高入侵检测系统的检测率并降低误报率. 相似文献
18.
一种基于SVM的网络入侵检测模型 总被引:1,自引:0,他引:1
针对传统机器学习方法在检测网络入侵时存在的问题,给出一种基于支持向量机(SVM)的网络入侵检测模型.大量实验证明:提出的网络入侵检测模型具有较高的检测率,避免了基于传统机器学习检测方法的局限性.在训练数据的过程中,考虑不同的网络数据特征对入侵检测结果的影响程度,还提出一种新的特征加权分类方法,并通过实验数据说明该方法可使检测精度有所提高. 相似文献