首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The type 1 angiotensin receptor (AT(1)) activates an array of intracellular signalling pathways that control cell and tissue responses to the peptide hormone angiotensin II (AngII). The capacity of AT(1) receptors to initiate and maintain such signals has typically been explained on the basis of conventional heterotrimeric guanine nucleotide binding protein (G protein) activation, specifically G(q/11). Accumulating evidence from studies utilising a variety of AT(1) receptor mutants and AngII analogues indicates that some important downstream effects of AT(1) receptors are independent of classical G protein coupling. Importantly, AT(1) receptor-mediated endocytosis, tyrosine phosphorylation signalling and mitogen-activated protein kinase activation as well as transactivation of the epidermal growth factor receptor can occur in G(q/11)-uncoupled receptor mutants. These observations point to a functional partitioning of AT(1) receptor signals that permits separation of short-term AngII actions (e.g., vasoconstriction) from more extended events, such as pathological cell growth in heart and blood vessels, and may open up new avenues for selective antagonism.  相似文献   

2.
G protein-coupled receptor (GPCR) signalling is mediated through transactivation-independent signalling pathways or the transactivation of protein tyrosine kinase receptors and the recently reported activation of the serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Since the original observation of GPCR transactivation of protein tyrosine kinase receptors, there has been considerable work on the mechanism of transactivation and several pathways are prominent. These pathways include the “triple membrane bypass” pathway and the generation of reactive oxygen species. The recent recognition of GPCR transactivation of serine/threonine kinase receptors enormously broadens the GPCR signalling paradigm. It may be predicted that the transactivation of serine/threonine kinase receptors would have mechanistic similarities with transactivation of tyrosine kinase pathways; however, initial studies suggest that these two transactivation pathways are mechanistically distinct. Important questions are the relative importance of tyrosine and serine/threonine transactivation pathways, the contribution of transactivation to overall GPCR signalling, mechanisms of transactivation and the range of cell types in which this phenomenon occurs. The ultimate significance of transactivation-dependent signalling remains to be defined but it appears to be prominent and if so will represent a new cell signalling frontier.  相似文献   

3.
4.
The structure and function of heterotrimeric G protein subunits is known in considerable detail. Upon stimulation of a heptahelical receptor by the appropriate agonists, the cognate G proteins undergo a cycle of activation and deactivation; the α-subunits and the βγ-dimers interact sequentially with several reaction partners (receptor, guanine nucleotides and effectors as well as regulatory proteins) by exposing appropriate binding sites. For most of these domains, low molecular weight ligands have been identified that either activate or inhibit signal transduction. These ligands include short peptides derived from receptors, G protein subunits and effectors, mastoparan and related insect venoms, modified guanine nucleotides, suramin analogues and amphiphilic cations. Because compounds that act on G proteins may be endowed with new forms of selectivity, we propose that G protein subunits may therefore be considered as potential drug targets. Received 18 September 1998; received after revision 6 November 1998; accepted 11 November 1998  相似文献   

5.
In recent years, a number of cross-talk systems have been identified which feed into the insulin signalling cascade at the level of insulin receptor substrate (IRS) tyrosine phosphorylation, e.g., receptor and non-receptor tyrosine kinases and G-protein-coupled receptors. At the molecular level, a number of negative modulator and feedback systems somehow interacting with the beta-subunit (catecholamine-, phorbolester-, or tumor necrosis factor-alpha-induced serine/threonine phosphorylation, carboxy-terminal trimming by a thiol-dependent protease, association of inhibitory/regulatory proteins such as RAD, PC1, PED, alpha2-HS-glycoprotein) have been identified as candidate mechanisms for the impairment of insulin receptor function by elevations in the activity and/or amount of the corresponding modification enzymes/inhibitors. Both decreased responsiveness and sensitivity of the insulin receptor beta-subunit for insulin-induced tyrosine autophosphorylation have been demonstrated in several cellular and animal models of metabolic insulin resistance as well as in the adipose tissue and skeletal muscle of diabetic patients and obese Pima Indians compared to non-obese subjects. Therefore, induction of the insulin signalling cascade by bypassing the defective insulin receptor kinase may be useful for the therapy of non-insulin dependent diabetes mellitus. During the past two decades, phosphoinositolglycans (PIGs) of various origin have been demonstrated to exert potent insulin-mimetic metabolic effects upon incubation with cultured or isolated muscle and adipose cells. However, it remained to be elucidated whether these compounds actually manage to trigger insulin signalling and if so at which level of hierarchy within the signalling cascade the site of interference is located. Recent studies using isolated rat adipocytes and chemically synthesized PIG compounds point to IRS1/3 tyrosine phosphorylation by p59Lyn kinase as the site of cross-talk, the negative regulation of which by interaction with caveolin is apparently abrogated by PIG. This putative mechanism is thus compatible with the recently formulated caveolin signalling hypothesis, the supporting data for which are reviewed here. Though we have not obtained experimental evidence for the involvement of PIG in physiological insulin action, the potential cross-talk between insulin and PIG signalling, including the caveolae/detergent-insoluble glycolipid-enriched rafts as the compartments where the corresponding signalling components are concentrated, thus represent novel targets for signal transduction therapy.  相似文献   

6.
The suppressors of cytokine signalling (SOCS)   总被引:10,自引:0,他引:10  
  相似文献   

7.
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.  相似文献   

8.
Neurotrophin signalling pathways regulating neuronal apoptosis   总被引:18,自引:0,他引:18  
Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival.  相似文献   

9.
Trimeric guanine nucleotide-binding proteins (G proteins) function as the key regulatory elements in a number of transmembrane signaling cascades where they convey information from agonist-activated receptors to effector molecules. The subcellular localization of G proteins is directly related to their functional role, i.e., the dominant portion of the cellular pool of G proteins resides in the plasma membrane. An intimate association of G protein subunits with the plasma membrane has been well known for a long time. However, results of a number of independent studies published in the past decade have indicated clearly that exposure of intact target cells to agonists results in subcellular redistribution of the cognate G proteins from plasma membranes to the light-vesicular membrane fractions, in internalization from the cell surface into the cell interior and in transfer from the membrane to the soluble cell fraction (high-speed supernatant), i.e., solubilization. Solubilization of G protein α subunits as a consequence of stimulation of G protein-coupled receptors (GPCRs) with agonists has also been observed in isolated membrane preparations. The membrane-cytosol shift of G proteins was detected even after direct activation of these proteins by non-hydrolyzable analogues of GTP or by cholera toxin-induced ADP-ribosylation. In addition, prolonged stimulation of GPCRs with agonists has been shown to lead to down-regulation of the relevant G proteins. Together, these data suggest that G proteins might potentially participate in a highly complex set of events, which are generally termed desensitization of the hormone response. Internalization, subcellular redistribution, solubilization, and down-regulation of trimeric G proteins may thus provide an additional means (i.e., beside receptor-based mechanisms) to dampen the hormone or neurotransmitter response after sustained (long-term) exposure. Received 31 August 2001; received after revision 31 October 2001; accepted 7 November 2001  相似文献   

10.
The conversion of guanosine triphosphate (GTP) to guanosine diphosphate (GDP) and inorganic phosphate (Pi) by guanine nucleotide binding proteins (GNBPs) is a fundamental process in living cells and represents an important timer in intracellular signalling and transport processes. While the rate of GNBP-mediated GTP hydrolysis is intrinsically slow, direct interaction with GTPase activating proteins (GAPs) accelerates the reaction by up to five orders of magnitude in vitro. Eighteen years after the discovery of the first GAP, biochemical and structural research has been accumulating evidence that GAPs employ a much wider spectrum of chemical mechanisms than had originally been assumed, in order to regulate the chemical players on the catalytic protein-protein interaction stage. Received 25 March 2005; received after revision 31 August 2005; accepted 6 September 2005  相似文献   

11.
The activation and signalling activity of the membrane μ-opioid receptor (MOP-R) involve interactions among the receptor, G-proteins, effectors and many other membrane or cytosolic proteins. Decades of investigation have led to identification of the main biochemical processes, but the mechanisms governing the successive protein–protein interactions have yet to be established. We will need to unravel the dynamic membrane organisation of this complex and multifaceted molecular machinery if we are to understand these mechanisms. Here, we review and discuss advances in our understanding of the signalling mechanism of MOP-R resulting from biochemical or biophysical studies of the organisation of this receptor in the plasma membrane.  相似文献   

12.
The glycinergic inhibitory synapse   总被引:22,自引:0,他引:22  
Glycine is one of the most important inhibitory neurotransmitters in the spinal cord and the brainstem, and glycinergic synapses have a well-established role in the regulation of locomotor behavior. Research over the last 15 years has yielded new insights on glycine neurotransmission. Glycinergic synapses are now known not to be restricted to the spinal cord and the brainstem. Presynaptic machinery for glycine release and uptake, the structure and function of postsynaptic receptors and the factors (both pre- and postsynaptic) which control the strength of glycinergic inhibition have been extensively studied. It is now established that glycinergic synapses can be excitatory in the immature brain and that some inhibitory synapses can corelease γ-aminobutyric acid (GABA) and glycine. Moreover, the presence of glycine transporters on glial cells and the capacity of these cells to release glycine suggest that glycine may also act as a neuromodulator. Extensive molecular studies have revealed the presence of distinct subtypes of postsynaptic glycine receptors with different functional properties. Mechanisms of glycine receptors aggregation at postsynaptic sites during development are better understood and functional implications of variation in receptor number between postsynaptic sites are partly elucidated. Mutations of glycine receptor subunits have been shown to underly some human locomotor disorders, including the startle disease. Clearly, recent work on glycine receptor channels and the synapses at which they mediate inhibitory signalling in both young and adult animals necessitates an update of our vision of glycinergic inhibitory transmission. Received 8 September 2000; received after revision 1 December 2000; accepted 21 December 2000  相似文献   

13.
Regulator of G-Protein Signaling (RGS) refers to a conserved 120–125 amino acid motif that was first identified by its ability to negatively regulate G-Protein-Coupled Receptor (GPCR) signalling. Mechanistically, RGSs were found to regulate GPCR responses by binding to and stimulating the GTPase activity of the receptor-activated GTP-bound G α subunits. There are now over 25 mammalian RGSs containing proteins that are reported to carry out a variety of functions, many of which are unrelated to GPCR signalling. RGS proteins range in size from small proteins that contain little more than an RGS box to very large proteins that contain a variety of domains. The selectivity of function of the RGS proteins is attributable to the divergence of the RGS sequences as well as the presence of a variety of functional motifs, which allow them to interact with other proteins. Here we focus on the RGSs that are involved in modulating GPCR signalling by reviewing the diversity of the mechanisms involved in regulating these RGSs. Received 9 February 2006; received after revision 4 May 2006; accepted 22 May 2006  相似文献   

14.
Neurotrophins are growth factors implicated in the development and maintenance of different neuronal populations in the nervous system. Neurotrophins bind to two sets of receptors, Trk receptor tyrosine kinases and the p75NTR receptor, to activate several different signaling pathways that mediate various biological functions. While Trk receptor activation has been well-studied and triggers the well-characterized Ras/Rap-MAPK, PI3K-Akt, and PLCgamma-PKC cascades, p75NTR signaling is more complex, and its in vivo significance has not yet been completely determined. In the last few years, p75NTR has received much attention mainly due to recent findings describing pro-neurotrophins as new ligands for the receptor and the ability of the receptor to form different complexes with other transmembrane proteins. This review will update the neurotrophin signaling pathways known for Trk receptors to include newly identified Trk-interacting molecules and will address surprising new findings that suggest a role for p75NTR in different receptor complexes and functions.  相似文献   

15.
16.
Recent progress in the understanding of signal transduction and gene regulation in hematopoietic cells has shown that many intracellular signalling pathways are modulated by low molecular weight guanine nucleotide (GTP)-binding proteins (LMWGs). LMWGs act as molecular switches for regulating a wide range of signal-transduction pathways in virtually all cells. In hematopoietic cells, LMWGs have been shown to participate in essential functions such as growth control, differentiation, cytoskeletal organization, cytokine and chemoattractant-induced signalling events, reduced nicotinamide adenine dinucleotide phosphate oxidase activity, intracellular vesicle transport and secretion. In human leukemias, myelodysplastic syndromes and myeloproliferative disorders, Ras activation occurs by point mutations, overexpression or by alteration of NF-1 Ras-GTPase activating protein (GAP). These are postinitiation events in leukemia but may modulate growth-factor-dependent and independent leukemic growth. Two animal models of mutated N-ras expression resulting in myelodysplastic and myeloproliferative features are discussed. The role of Ras in organ development is discussed in the context of transgenic knockout mice. More LMWG functions will certainly be identified as we gain a better understanding of regulatory pathways modulating myeloid signal transduction. This review will summarize our current understanding of this rapidly advancing area of research.  相似文献   

17.
Over the past years, parallel studies conducted in mammals and flies have emphasized the existence of common mechanisms regulating the vertebrate and invertebrate innate immune systems. This culminated in the discovery of the central role of the Toll pathway in Drosophila immunity and in the implication of Toll-like receptors (TLRs)/interleukin-1(IL-1) in the mammalian innate immune response. In spite of clear similarities, such as shared intracellular pathway components, important divergences are expected between the two groups, whose last common ancestor lived more than half a billion years ago. The most obvious discrepancies lie in the mode of activation of the signalling receptors by microorganisms. In mammals, TLRs are part of protein complexes which directly recognize microbe-associated patterns, whereas Drosophila Toll functions like a classical cytokine receptor rather than a pattern recognition receptor. Recent studies demonstrate that members of the evolutionarily conserved peptidoglycan recognition protein family play an essential role in microbial sensing during immune response of Drosophila.Received 26 June 2003; received after revision 29 July 2003; accepted 25 August 2003  相似文献   

18.
Conclusion The insulin receptor is an integral protein of the plasma membrane of the cell. It is composed of two subunits: an subunit, which binds the hormone, and a subunit which is a tyrosine specific protein kinase capable of undergoing autophosphorylation. These independent subunits are synthesized by way of a higher molecular weight single chain precursor and thus are the product of a single gene29, 49, 85 localized to chromosome 1929, 91. Assuming that the insulin receptor is synthesized in the same fashion as other integral membrane glycoproteins, then the nucleus, the rough endoplasmic reticulum, and the Golgi apparatus are involved in its biosynthesis. Further, there must be some form of transport of the mature receptor subunits to the plasma membrane where they are inserted.By contrast, the endocytotic route involves coated pits, coated vesicles, large clear vesicles or endosomes, multivesicular bodies and other lysosomal forms. In addition, it is possible that some other as yet unidentified organelle is involved in recycling (fig. 8). At the present time, with respect to the insulin receptor, the biosynthetic pathway and the endocytotic pathway appear to be separate. Further, it does not appear that either pathway, i. e. synthesis or endocytosis, exerts a regulatory function over the other.  相似文献   

19.
20.
G protein betagamma subunits are central participants in G protein-coupled receptor signaling pathways. They interact with receptors, G protein alpha subunits and downstream targets to coordinate multiple, different GPCR functions. Much is known about the biology of Gbetagamma subunits but mysteries remain. Here, we will review what is known about general aspects of structure and function of Gbetagamma as well as discuss emerging mechanisms for regulation of Gbetagamma signaling. Recent data suggest that Gbetagamma is a potential therapeutic drug target. Thus, a thorough understanding of the molecular and physiological functions of Gbetagamma has significant implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号