首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A detailed 3-D P-wave velocity model of the crust and uppermost mantle under the capitol region is determined with a spatial resolution of 25 km in the horizontal direction and 4-17 km in depth. We used 48750 precise P-wave arrival time data from 2973 events of local crustal earthquakes, controlled seismic explosions and quarry blasts. These events were recorded by 123 seismic stations. The data are analyzed by using a 3-D seismic tomography method. Our tomographic model provides new information on the geological structure and complex seismotectonics of this region. Different patterns of velocity structures show up in the North China Basin, the Taihangshan and the Yanshan Mountainous areas. The velocity images of the upper crust reflect well the surface geological, topographic and lithological features. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocity belts, respectively, which are oriented in NE-SW direction. The trend of velocity anomalies is the same as that of major structure and tectonics. Paleozoic strata and Pre-Cambrian basement rocks outcrop widely in the Taihangshan and Yanshan uplift areas, which exhibit strong and broad high-velocity anomalies in our tomographic images, while the Quaternary intermountain basins show up as small low-velocity anomalies. Most of large earthquakes, such as the 1976 Tangshan earthquake (M 7.8) and the 1679 Sanhe earthquake (M 8.0), generally occurred in high-velocity areas in the upper to middle crust. However, in the lower crust to the uppermost mantle under the source zones of the large earthquakes, low-velocity and high-conductivity anomalies exist, which are considered to be associated with fluids, just like the 1995 Kobe earthquake (M 7.2) and the 2001 Indian Bhuj earthquake (M 7.8). The fluids in the lower crust may cause the weakening of the seismogenic layer in the upper and middle crust and thus contribute to the initiation of the large crustal earthquakes.  相似文献   

2.
Becken M  Ritter O  Bedrosian PA  Weckmann U 《Nature》2011,480(7375):87-90
The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield. Non-volcanic tremor from lower-crustal and upper-mantle depths is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth. Here we present geophysical evidence of fluids migrating into the creeping section of the San Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield-Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, subvertical zones of low resistivity breach the entire crust near the drill hole of the San Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust.  相似文献   

3.
When continents break apart, the rifting is sometimes accompanied by the production of large volumes of molten rock. The total melt volume, however, is uncertain, because only part of it has erupted at the surface. Furthermore, the cause of the magmatism is still disputed-specifically, whether or not it is due to increased mantle temperatures. We recorded deep-penetration normal-incidence and wide-angle seismic profiles across the Faroe and Hatton Bank volcanic margins in the northeast Atlantic. Here we show that near the Faroe Islands, for every 1 km along strike, 360-400 km(3) of basalt is extruded, while 540-600 km(3) is intruded into the continent-ocean transition. We find that lower-crustal intrusions are focused mainly into a narrow zone approximately 50 km wide on the transition, although extruded basalts flow more than 100 km from the rift. Seismic profiles show that the melt is intruded into the lower crust as sills, which cross-cut the continental fabric, rather than as an 'underplate' of 100 per cent melt, as has often been assumed. Evidence from the measured seismic velocities and from igneous thicknesses are consistent with the dominant control on melt production being increased mantle temperatures, with no requirement for either significant active small-scale mantle convection under the rift or the presence of fertile mantle at the time of continental break-up, as has previously been suggested for the North Atlantic Ocean.  相似文献   

4.
Abers GA  Ferris A  Craig M  Davies H  Lerner-Lam AL  Mutter JC  Taylor B 《Nature》2002,418(6900):862-865
In many highly extended rifts on the Earth, tectonic removal of the upper crust exhumes mid-crustal rocks, producing metamorphic core complexes. These structures allow the upper continental crust to accommodate tens of kilometres of extension, but it is not clear how the lower crust and underlying mantle respond. Also, despite removal of the upper crust, such core complexes remain both topographically high and in isostatic equilibrium. Because many core complexes in the western United States are underlain by a flat Moho discontinuity, it has been widely assumed that their elevation is supported by flow in the lower crust or by magmatic underplating. These processes should decouple upper-crust extension from that in the mantle. In contrast, here we present seismic observations of metamorphic core complexes of the western Woodlark rift that show the overall crust to be thinned beneath regions of greatest surface extension. These core complexes are actively being exhumed at a rate of 5-10 km Myr(-1), and the thinning of the underlying crust appears to be compensated by mantle rocks of anomalously low density, as indicated by low seismic velocities. We conclude that, at least in this case, the development of metamorphic core complexes and the accommodation of high extension is not purely a crustal phenomenon, but must involve mantle extension.  相似文献   

5.
A mechanism to thin the continental lithosphere at magma-poor margins   总被引:2,自引:0,他引:2  
Lavier LL  Manatschal G 《Nature》2006,440(7082):324-328
Where continental plates break apart, slip along multiple normal faults provides the required space for the Earth's crust to thin and subside. After initial rifting, however, the displacement on normal faults observed at the sea floor seems not to match the inferred extension. Here we show that crustal thinning can be accomplished in such extensional environments by a system of conjugate concave downward faults instead of multiple normal faults. Our model predicts that these concave faults accumulate large amounts of extension and form a very thin crust (< 10 km) by exhumation of mid-crustal and mantle material. This transitional crust is capped by sub-horizontal detachment surfaces over distances exceeding 100 km with little visible deformation. Our rift model is based on numerical experiments constrained by geological and geophysical observations from the Alpine Tethys and Iberia/Newfoundland margins. Furthermore, we suggest that the observed transition from broadly distributed and symmetric extension to localized and asymmetric rifting is directly controlled by the existence of a strong gabbroic lower crust. The presence of such lower crustal gabbros is well constrained for the Alpine Tethys system. Initial decoupling of upper crustal deformation from lower crustal and mantle deformation by progressive weakening of the middle crust is an essential requirement to reproduce the observed rift evolution. This is achieved in our models by the formation of weak ductile shear zones.  相似文献   

6.
Constraints on the structure of rifted continental margins and the magmatism resulting from such rifting can help refine our understanding of the strength of the lithosphere, the state of the underlying mantle and the transition from rifting to seafloor spreading. An important structural classification of rifts is by width, with narrow rifts thought to form as necking instabilities (where extension rates outpace thermal diffusion) and wide rifts thought to require a mechanism to inhibit localization, such as lower-crustal flow in high heat-flow settings. Observations of the magmatism that results from rifting range from volcanic margins with two to three times the magmatism predicted from melting models to non-volcanic margins with almost no rift or post-rift magmatism. Such variations in magmatic activity are commonly attributed to variations in mantle temperature. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present crustal-scale images across three rift segments. Over short lateral distances, we observe large differences in rifting style and magmatism--from wide rifting with minor synchronous magmatism to narrow rifting in magmatically robust segments. But many of the factors believed to control structural evolution and magmatism during rifting (extension rate, mantle potential temperature and heat flow) tend to vary over larger length scales. We conclude instead that mantle depletion, rather than low mantle temperature, accounts for the observed wide, magma-poor margins, and that mantle fertility and possibly sedimentary insulation, rather than high mantle temperature, account for the observed robust rift and post-rift magmatism.  相似文献   

7.
A deep seismic sounding profile in this paper, from Fuliji in Anhui Province to Fengxian of Shanghai City, is located at eastern China (Fig. 1). The field work was jointly accomplished by the Chinese Geological and Mineral Bureau, the China Seismological …  相似文献   

8.
Wilson D  Aster R  West M  Ni J  Grand S  Gao W  Baldridge WS  Semken S  Patel P 《Nature》2005,433(7028):851-855
A high-resolution, regional passive seismic experiment in the Rio Grande rift region of the southwestern United States has produced new images of upper-mantle velocity structure and crust-mantle topography. Synthesizing these results with geochemical and other geophysical evidence reveals highly symmetric lower-crustal and upper-mantle lithosphere extensional deformation, suggesting a pure-shear rifting mechanism for the Rio Grande rift. Extension in the lower crust is distributed over a region four times the width of the rift's surface expression. Here we propose that the laterally distributed, pure shear extension is a combined effect of low strain rate and a regionally elevated geotherm, possibly abetted by pre-existing lithospheric structures, at the time of rift initiation. Distributed extension in the lower crust and mantle has induced less concentrated vertical mantle upwelling and less vigorous small-scale convection than would have arisen from more localized deformation. This lack of highly focused mantle upwelling may explain a deficit of rift-related volcanics in the Rio Grande rift compared to other major rift systems such as the Kenya rift.  相似文献   

9.
The electric Moho   总被引:2,自引:0,他引:2  
Jones AG  Ferguson IJ 《Nature》2001,409(6818):331-333
Since Mohorovici? discovered a dramatic increase in compressional seismic velocity at a depth of 54 km beneath the Kulpa Valley in Croatia, the 'Moho' has become arguably the most important seismological horizon in Earth owing to its role in defining the crust-mantle boundary. It is now known to be a ubiquitous feature of the Earth, being found beneath both the continents and the oceans, and is commonly assumed to separate lower-crustal mafic rocks from upper-mantle ultramafic rocks. Electromagnetic experiments conducted to date, however, have failed to detect a corresponding change in electrical conductivity at the base of the crust, although one might be expected on the basis of laboratory measurements. Here we report electromagnetic data from the Slave craton, northern Canada, which show a step-change in conductivity at Moho depths. Such resolution is possible because the Slave craton is highly anomalous, exhibiting a total crustal conductance of less than 1 Siemens--more than an order of magnitude smaller than other Archaean cratons. We also found that the conductivity of the uppermost continental mantle directly beneath the Moho is two orders of magnitude more conducting than laboratory studies on olivine would suggest, inferring that there must be a connected conducting phase.  相似文献   

10.
利用布设在山东省境内的宽频带流动地震观测台阵和国家地震局固定地震观测台站记录的地震数据,应用接收函数和SKS波分裂方法,研究山东地区的地壳与上地幔结构,得到该区域的地壳厚度、地壳平均P波与S波的波速比以及SKS波分裂延迟的分布情况。结果表明,山东地区地壳厚度范围为28~39km;胶南隆起的北段和南段以及鲁西隆起北侧济阳凹陷的地壳厚度小于32km,鲁西隆起下方的地壳比较厚。研究区P波与S波的波速比主要分布在1.67~1.94之间,鲁西隆起西南部和胶南隆起北段该比值小于1.75,可能是由中上地壳增厚以及下地壳减薄和拆沉造成。鲁西隆起南北P波与S波的波速比差异反映地壳活动的差异。地幔物质的各向异性显示,山东地区西部的地壳减薄和拆沉可能仍在进行。  相似文献   

11.
Green HW  Chen WP  Brudzinski MR 《Nature》2010,467(7317):828-831
Strong evidence exists that water is carried from the surface into the upper mantle by hydrous minerals in the uppermost 10-12?km of subducting lithosphere, and more water may be added as the lithosphere bends and goes downwards. Significant amounts of that water are released as the lithosphere heats up, triggering earthquakes and fluxing arc volcanism. In addition, there is experimental evidence for high solubility of water in olivine, the most abundant mineral in the upper mantle, for even higher solubility in olivine's high-pressure polymorphs, wadsleyite and ringwoodite, and for the existence of dense hydrous magnesium silicates that potentially could carry water well into the lower mantle (deeper than 1,000?km). Here we compare experimental and seismic evidence to test whether patterns of seismicity and the stabilities of these potentially relevant hydrous phases are consistent with a wet lithosphere. We show that there is nearly a one-to-one correlation between dehydration of minerals and seismicity at depths less than about 250?km, and conclude that the dehydration of minerals is the trigger of instability that leads to seismicity. At greater depths, however, we find no correlation between occurrences of earthquakes and depths where breakdown of hydrous phases is expected. Lastly, we note that there is compelling evidence for the existence of metastable olivine (which, if present, can explain the distribution of deep-focus earthquakes) west of and within the subducting Tonga slab and also in three other subduction zones, despite metastable olivine being incompatible with even extremely small amounts of water (of the order of 100?p.p.m. by weight). We conclude that subducting slabs are essentially dry at depths below 400?km and thus do not provide a pathway for significant amounts of water to enter the mantle transition zone or the lower mantle.  相似文献   

12.
The Central Andes are the Earth's highest mountain belt formed by ocean-continent collision. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust, dominated by tectonic shortening. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovici? discontinuity--generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro-eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10-20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.  相似文献   

13.
闽省沿海陆区广泛分布有中-新生代火山岩系,为古岛弧构造的产物,是我国东南沿海裂谷带的一个组成部分。大地电磁测深工作结果发现,区内漳州、闽侯测点壳内高导层埋深特别浅,仅8km。经地质、地球物理资料的综合分析,并和世界大陆裂谷区作对比,认为本区深部电性分布反映了裂谷区的特点,可作为裂谷的佐证。  相似文献   

14.
Thermal structures of three deep seismic profiles in the continental margin in the northern South China Sea are calculated, their "thermal" lithospheric thicknesses are evaluated based on the basalt dry solidus, and their rheological structures are evaluated with linear frictional failure criterion and power-law creep equation. "Thermal" lithosphere is about 90 km in thickness in shelf area, and thins toward the slope, lowers to 60-65 km in the lower slope, ocean crust and Xisha Trough. In the mid-west of the studied area, the lithospheric rheological structure in shelf area and Xisha Islands is of four layers: brittle, ductile, brittle and ductile. Because of uprising of heat mantle and thinning of crust and lithosphere in Xisha Trough, the bottom of the upper brittle layer is only buried at 16 km. In the eastern area, the bottom of the upper brittle layer in the north is buried at 20 km or so, while in lower slope and ocean crust, the rheological structure is of two layers of brittle and ductile, and crust and uppermost mantle form one whole brittle layer whose bottom is buried at 30-32 km. Analyses show that the characteristics of rheological structure accord with the seismic result observed. The character of rheological stratification implies that before the extension of the continent margin, there likely was a ductile layer in mid-lower crust. The influence of the existence of ductile layer to the evolution of the continent margin and the different extensions of ductile layer and brittle layer should not be overlooked. Its thickness, depth and extent in influencing continent margin's extension and evolution should be well evaluated in building a dynamic model for the area.  相似文献   

15.
This paper discusses deep crustal architecture of the Baiyun Sag of the Pearl River Mouth Basin, northern South China Sea based on velocity analysis, time-depth conversion and seismic interpretation of the deep seismic reflection profile DSRP-2002. The profile was acquired and processed to 14 S TWT by the China National Offshore Oil Corp. (CNOOC) in 2002. It extends across the Baiyun Sag of the Pearl River Mouth Basin, from the northern continental shelf of the SCS to the deepwater province. As the first deep seismic reflection profile in the Pearl River Mouth Basin, this profile reveals seismic phases from basement down to upper most mantle. The Moho surface appears in the profile as an undulating layer of varying thickness of 1-3 km. It is not a single reflector interface, but a velocity gradient or interconversion layer. The crust thins stepwisely from the shelf to the continental slope and the abyssal plain (from north to south), and also thins under depocenters. The crustal thickness is only 7 km in the depocenter of the main Baiyun Sag, which corresponds to a Moho upwelling mirroring the basement topography. In the lower slope and the ocean-continental transition zone of the southernmost portion of the profile, three sub-parallel, NW-dipping strong reflectors found at depths around 10--21 km are interpreted as indications of a subducted Mesozoic oceanic crust. Crustal faults exist in the northern and southern boundaries of the Baiyun Sag. The intense and persistent subsidence of the Baiyun Sag might be related to the long-term activity of the crustal faults.  相似文献   

16.
Wright TJ  Ebinger C  Biggs J  Ayele A  Yirgu G  Keir D  Stork A 《Nature》2006,442(7100):291-294
Seafloor spreading centres show a regular along-axis segmentation thought to be produced by a segmented magma supply in the passively upwelling mantle. On the other hand, continental rifts are segmented by large offset normal faults, and many lack magmatism. It is unclear how, when and where the ubiquitous segmented melt zones are emplaced during the continental rupture process. Between 14 September and 4 October 2005, 163 earthquakes (magnitudes greater than 3.9) and a volcanic eruption occurred within the approximately 60-km-long Dabbahu magmatic segment of the Afar rift, a nascent seafloor spreading centre in stretched continental lithosphere. Here we present a three-dimensional deformation field for the Dabbahu rifting episode derived from satellite radar data, which shows that the entire segment ruptured, making it the largest to have occurred on land in the era of satellite geodesy. Simple elastic modelling shows that the magmatic segment opened by up to 8 m, yet seismic rupture can account for only 8 per cent of the observed deformation. Magma was injected along a dyke between depths of 2 and 9 km, corresponding to a total intrusion volume of approximately 2.5 km3. Much of the magma appears to have originated from shallow chambers beneath Dabbahu and Gabho volcanoes at the northern end of the segment, where an explosive fissural eruption occurred on 26 September 2005. Although comparable in magnitude to the ten year (1975-84) Krafla events in Iceland, seismic data suggest that most of the Dabbahu dyke intrusion occurred in less than a week. Thus, magma intrusion via dyking, rather than segmented normal faulting, maintains and probably initiated the along-axis segmentation along this sector of the Nubia-Arabia plate boundary.  相似文献   

17.
Focal depth data of earthquakes in Mainland China are processed and analyzed in this paper, as well as the relationship between the focal depths and large-scale tectonic structures. As a basic parameter for earthquakes, focal depth is used to investigate deep environment of seismogenic regions, tectonic backgrounds for concentration and release of seismic energy, the inner crustal deformation and its mechanic features. Depth data of 31282 ML≥2.0 events with 1st class and 2nd class precision in Mainland China from Jan. 1, 1970 to May 31, 2000 are used to get spatial features of earthquakes distributed with depth and to provide average depth for each grid area throughout China. Researches show that the average depth (D-) for all the earthquakes used in this paper is (16±7) km, and (13±6) km and (18±8) km for the events in eastern China and western China, respectively. The area with the deepest focal depth is located in southwest Xinjiang region, near the western and southwestern ends of the Tarim Basin. The focal depth related to large-scale tectonic structures, for instance, = (33±12), (21±10), (14±7), (11±5) and (10±4) km in Tibet plateau block, Xinjiang block, North China, Northeastern China and South China, respectively. The earthquakes are deeper at the bounders of the integrated tectonic blocks, including the southwestern and northern brims of the Tarim Basin, southern brim of the Zhunge'r Basin and that of the Alashan block, as well as the eastern and western sides of the Edos block and the western brim of the Sichuan Basin. The earthquakes at the newly ruptured belts are relatively shallower, for instance, at the southwestern Yunnan seismic belt and the Zhangjiakou-Bohai seismic belt. The mechanic behavior, deformation and features for the crust and mantle structures are also discussed.  相似文献   

18.
Evolution of the Archaean crust by delamination and shallow subduction   总被引:12,自引:0,他引:12  
Foley SF  Buhre S  Jacob DE 《Nature》2003,421(6920):249-252
The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle.The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time.  相似文献   

19.
Magma-assisted rifting in Ethiopia   总被引:1,自引:0,他引:1  
Kendall JM  Stuart GW  Ebinger CJ  Bastow ID  Keir D 《Nature》2005,433(7022):146-148
The rifting of continents and evolution of ocean basins is a fundamental component of plate tectonics, yet the process of continental break-up remains controversial. Plate driving forces have been estimated to be as much as an order of magnitude smaller than those required to rupture thick continental lithosphere. However, Buck has proposed that lithospheric heating by mantle upwelling and related magma production could promote lithospheric rupture at much lower stresses. Such models of mechanical versus magma-assisted extension can be tested, because they predict different temporal and spatial patterns of crustal and upper-mantle structure. Changes in plate deformation produce strain-enhanced crystal alignment and increased melt production within the upper mantle, both of which can cause seismic anisotropy. The Northern Ethiopian Rift is an ideal place to test break-up models because it formed in cratonic lithosphere with minor far-field plate stresses. Here we present evidence of seismic anisotropy in the upper mantle of this rift zone using observations of shear-wave splitting. Our observations, together with recent geological data, indicate a strong component of melt-induced anisotropy with only minor crustal stretching, supporting the magma-assisted rifting model in this area of initially cold, thick continental lithosphere.  相似文献   

20.
The role of crustal quartz in controlling Cordilleran deformation   总被引:1,自引:0,他引:1  
Lowry AR  Pérez-Gussinyé M 《Nature》2011,471(7338):353-357
Large-scale deformation of continents remains poorly understood more than 40 years after the plate tectonic revolution. Rock flow strength and mass density variations both contribute to stress, so both are certain to be important, but these depend (somewhat nebulously) on rock type, temperature and whether or not unbound water is present. Hence, it is unclear precisely how Earth material properties translate to continental deformation zones ranging from tens to thousands of kilometres in width, why deforming zones are sometimes interspersed with non-deforming blocks and why large earthquakes occasionally rupture in otherwise stable continental interiors. An important clue comes from observations that mountain belts and rift zones cyclically form at the same locations despite separation across vast gulfs of time (dubbed the Wilson tectonic cycle), accompanied by inversion of extensional basins and reactivation of faults and other structures formed in previous deformation events. Here we show that the abundance of crustal quartz, the weakest mineral in continental rocks, may strongly condition continental temperature and deformation. We use EarthScope seismic receiver functions, gravity and surface heat flow measurements to estimate thickness and seismic velocity ratio, v(P)/v(S), of continental crust in the western United States. The ratio v(P)/v(S) is relatively insensitive to temperature but very sensitive to quartz abundance. Our results demonstrate a surprising correlation of low crustal v(P)/v(S) with both higher lithospheric temperature and deformation of the Cordillera, the mountainous region of the western United States. The most plausible explanation for the relationship to temperature is a robust dynamical feedback, in which ductile strain first localizes in relatively weak, quartz-rich crust, and then initiates processes that promote advective warming, hydration and further weakening. The feedback mechanism proposed here would not only explain stationarity and spatial distributions of deformation, but also lend insight into the timing and distribution of thermal uplift and observations of deep-derived fluids in springs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号