首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 57 毫秒
1.
为了解决原空间中最小二乘支持向量机的解缺乏稀疏性的缺点,提出了Pruning法、MFCV法和IMFCV法并对BDFS法进行了修改和运用。对一个不含有奇异点的系统而言,Pruning法、BDFS法和MFCV法在一定程度上都能实现原空间中最小二乘支持向量机解的稀疏性。BDFS法无论是训练时间还是预测时间都比Pruning法短;和MFCV法比起来,虽然BDFS法的训练时间短,但比MFCV的预测时间长。对一个含有奇异点的系统而言,Pruning法几乎失去了效用;虽然BDFS和MFCV法的训练时间都比IMFCV法的训练时间短,但IMFCV法能成功抑制奇异点从而缩短预测时间。  相似文献   

2.
模糊偏最小二乘支持向量机的应用研究   总被引:1,自引:1,他引:1  
宋海鹰  桂卫华  阳春华 《系统仿真学报》2008,20(5):1344-1347,1352
基于偏最小二乘回归法和模糊隶属度函数,提出了一种模糊偏最小二乘支持向量机.传统最小二乘支持向量机引入模糊加权系数后,可以根据训练样本点的情况调整折衷系数,有效地提高了最小二乘支持向量机的抗噪性能.同时利用偏最小二乘回归法,克服了求解线性回归方程中自变量向量间的多重相关性问题.利用 sinc 函数对该建模方法进行了测试,并进一步对铜转炉吹炼时间的预测问题进行了仿真研究.仿真结果表明,该建模方法具有预测准确、跟踪性能好的优点.  相似文献   

3.
不平衡最小二乘支持向量机   总被引:1,自引:0,他引:1  
针对标准的最小二乘支持向量机(LSSVM)没有考虑样本分布不平衡的问题提出一种称为不平衡最小二乘支持向量机的算法.首先用标准的最小二乘支持向量机对原始数据进行初步训练,产生一个分离超平面的法向量.然后把高雏样本投影到该法向量上得到一维数据.最后由该一维数据的标准差以及样本数量差异所提供的信息,给出两类数据惩罚因子比例,再用标准的最小二乘支持向量机进行第二次训练,对分离超平面进行调整.该方法克服传统方法只考虑数量的不平衡的不足,将原有样本集中具有的分类信息充分提取出来,提高了最小二乘支持向量机的泛化能力.实验结果表明,所提方法可以有效提高不平衡数据的分类性能.  相似文献   

4.
基于最小二乘支持向量机的交通安全预测模型   总被引:2,自引:0,他引:2  
分析了最小二乘支持向量机(LS-SVM)在交通安全预测中的优势,确定输入向量集合和输出向量集合,利用LS-SVM建立交通安全预测模型.将1953~2006年全国交通安全相关数据分为训练集和测试集,利用Matlab 7.0进行仿真测试.通过训练LS-SVM得到模型具体参数值,然后对测试集数据进行预测,计算预测误差,并与神经网络模型、SVM模型预测结果进行对比.仿真结果表明,基于LS-SVM建立的交通安全预测模型比神经网络预测模型、SVM模型具有更高的运算速度和预测精确度.  相似文献   

5.
超球体多类支持向量机(HSMC-SVM)是一种直接型多类分类器,具有训练速度快,检测效率高的优点,但由于HSMC-SVM使用一阶范数软间隔作为目标函数的惩罚项,使得其训练精度受到一定影响,为了提高HSMC-SVM训练精度,将最小二乘法引入到HSMC-SVM中,提出了最小二乘超球多类支持向量机(LSHS-MCSVM)的概念,并且分析了它的训练算法和判决规则,从而形成了完整的LSHS-MCSVM分类理论.实验表明,LSHS-MCSVM无论在训练速度上还是在泛化性能上都要优于HSMC-SVM,适合于分类类别多,样本数量大的多分类场合.  相似文献   

6.
基于最小二乘支持向量机的软测量建模   总被引:55,自引:6,他引:55  
软测量技术在工业过程控制中得到了广泛的应用,对保证产品质量和安全生产有很重要的作用。软测量技术的核心问题是建立优良的软测量数学模型。支持向量机是近几年发展起来的机器学习的新方法,它较好地解决了小样本、非线性、高维数、局部极小点等实际问题。本文研究了基于最小二乘支持向量机的软测量建模方法,并用交叉验证的方法进行支持向量机参数选择。将基于最小二乘支持向量机的软测量模型应用于轻柴油凝固点的预估。结果表明最小二乘支持向量机是软测量建模的一种非常有效的方法。  相似文献   

7.
用于回归估计的支持向量机方法   总被引:58,自引:4,他引:58  
杜树新  吴铁军 《系统仿真学报》2003,15(11):1580-1585,1633
用于回归估计的支持向量机方法以可控制的精度逼近非线性函数,具有全局最优、良好泛化能力等优越性能,得到广泛的研究。描述了该方法的基本思想,着重讨论了V-SVM、最小二乘SVM、加权SVM、线性SVM等支持向量机的新方法,降低训练时间和减少计算复杂性的分解法、SMO及增量学习算法。在非线性系统参数辨识、预测预报、建模与控制研究中,支持向量机是很有发展前途的研究方法。  相似文献   

8.
基于最小二乘支持向量机的非线性系统建模   总被引:3,自引:4,他引:3  
探讨了利用支持向量机进行非线性系统建模的方法。首先,利用相空间重构,将非线性时间数据序列映射到高维空间,以便把时间序列中蕴藏的信息充分显露出来。其次,基于最小二乘支持向量机(RLS-SVM)对系统进行建模,仿真结果表明,支持向量机具有良好的非线性建模能力和泛化能力,原始时间数据序列和重建时间数据序列相似,说明提出的算法能够有效的对非线性动态系统的时间序列进行建模。  相似文献   

9.
支持向量机是一种新型的学习方法,该方法以结构风险最小化原则取代传统机器学习中的经验风险最小化原则,在小样本的机器学习中显示出了优异的性能.传统的支持向量机是解凸二次规划问题,而最小二乘支持向量机是解等式线性方程,显得尤为方便,通过建立适当的性能指标,用遗传算法优化最小二乘支持向量机的有关参数,并在非线性经济系统中应用.用最小二乘支持向量机对非线性经济系统进行预测并与其它方法的预测结果比较,结果证明,该模型的预测精确度是令人满意的,文中提出的方法是可行的.  相似文献   

10.
李娜  刘明光  杨罡 《系统仿真学报》2011,23(7):1502-1506
牵引电机的磁化曲线是直流牵引电机准确建模及性能分析的基础,以电力机车为例,介绍了利用最小二乘支持向量机对牵引电机磁化曲线进行拟合,从而建立准确的直流牵引电机模型的方法。分析了牵引电机磁路非线性的特性,运用最小二乘支持向量机的回归理论,通过对牵引电机实验所得的磁化曲线数据进行学习,建立了基于LS-SVM的曲线拟合模型。拟合结果表明,该模型比以往的分段线性化和神经网络拟合的速度及精度都有较大的提高,在小样本情况下有更好的泛化能力,为牵引电机建立非线性模型提供了新的参考。在LS-SVM拟合曲线的基础上建立了直流牵引电机仿真模型,仿真结果表明,该模型准确可靠,可用于对直流牵引电机系统性能及控制策略的研究。  相似文献   

11.
最小二乘支持向量机参数选择方法及其应用研究   总被引:37,自引:3,他引:37  
郭辉  刘贺平  王玲 《系统仿真学报》2006,18(7):2033-2036,2051
针对最小二乘支持向量机参数选择问题,提出了一种基于三步搜索技术的参数选择方法,理论分析表明了这种方法的有效性和优越性,可以优化选择最小二乘支持向量机参数。然后把该方法用于钢材淬透性建模中的参数选择,仿真结果表明,这种方法可以得到优化的参数,从而获得精确的建模效果。  相似文献   

12.
一种集成logistic回归与支持向量机的判别分析规则   总被引:1,自引:0,他引:1  
支持向量机的输出结果可以通过几何分析划分为六个连续的区间,并求得各个区间内训练样本的错误分类频率.本文以二分判别为例,将每个区间上的误分频率与logistic回归对预测样本的输出概率进行比较,提出了一种集成logistic回归与支持向量机的判别分析规则,并采用支持向量机效果验证的基准数据集进行实证分析.实证结果验证了所提出方法的有效性.  相似文献   

13.
分析了温室小气候系统结构,采用加权最小二乘支持向量机回归方法在线建立温室小气候模型,并进行仿真研究,取得了较好的效果.最小二乘支持向量机中引入加权因子,使其回归估计对非高斯分布噪声及野点数据具有较好的鲁棒性.最后将此方法和带有智能监督级的渐消记忆递推增广最小二乘方法的在线建模及仿真结果进行了对比分析.  相似文献   

14.
杨华波  张士峰  蔡洪 《系统仿真学报》2007,19(10):2177-2179,2182
制导工具误差分离与折合是导弹精度评定中的重要问题。由于工具误差分离存在着很强的复共线性,传统的最小二乘方法与主成分方法不能很好的解决这一问题。提出了利用支持向量机方法获得工具误差系数估计的思想,并将估计结果应用用到弹道误差折合中,与最小二乘和主成分方法相比,支持向量机获得的误差系数估计与真值更加接近,分离残差较小,折合得到的全程弹道遥外差更加接近于真实值。  相似文献   

15.
基于自由自航船模试验或实船试验的系统辨识方法是一种确定船舶操纵运动水动力导数的有效方法.通过对舵角、漂角、转首角速度等试验数据的分析,用最小二乘支持向量机确定了船舶操纵运动数学模型中的水动力导数及其干扰力系数,其中非线性模型的参数辨识采用了多项式核函数.利用辨识得到的参数进行了操纵运动预报仿真并同自航模试验及实船试验数据对比,数值仿真结果验证了方法的有效性.  相似文献   

16.
基于支持向量机的概率密度估计方法   总被引:1,自引:1,他引:1  
张炤  张素  章琛曦  陈亚珠 《系统仿真学报》2005,17(10):2355-2357
介绍了基于支持向量机的概率密度估计。从概率密度的定义出发,利用支持向量机求解线性算子方程的方法,直接估计出密度。建立了几种不同的支持向量机仿真模型来进行概率密度估计。从仿真结果来看,该种方法与Parzen窗的精度等级类似,同时又具有Parzen窗方法所不具备的稀疏解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号