首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NKG2D is one of the most intensively studied immune receptors of the past decade. Its unique binding and signaling properties, expression pattern, and functions have been attracting much interest within the field due to its potent antiviral and anti-tumor properties. As an activating receptor, NKG2D is expressed on cells of the innate and adaptive immune system. It recognizes stress-induced MHC class I-like ligands and acts as a molecular sensor for cells jeopardized by viral infections or DNA damage. Although the activating functions of NKG2D have been well documented, recent analysis of NKG2D-deficient mice suggests that this receptor may have a regulatory role during NK cell development. In this review, we will revisit known aspects of NKG2D functions and present new insights in the proposed influence of this molecule on hematopoietic differentiation.  相似文献   

2.
Regulation of insulin receptor function   总被引:1,自引:0,他引:1  
Resistance to the biological actions of insulin contributes to the development of type 2 diabetes and risk of cardiovascular disease. A reduced biological response to insulin by tissues results from an impairment in the cascade of phosphorylation events within cells that regulate the activity of enzymes comprising the insulin signaling pathway. In most models of insulin resistance, there is evidence that this decrement in insulin signaling begins with either the activation or substrate kinase activity of the insulin receptor (IR), which is the only component of the pathway that is unique to insulin action. Activation of the IR can be impaired by post-translational modifications of the protein involving serine phosphorylation, or by binding to inhibiting proteins such as PC-1 or members of the SOCS or Grb protein families. The impact of these processes on the conformational changes and phosphorylation events required for full signaling activity, as well as the role of these mechanisms in human disease, is reviewed in this article. Received 3 August 2006; received after revision 1 December 2006; accepted 8 January 2007  相似文献   

3.
Regulation of receptor function by cholesterol   总被引:8,自引:0,他引:8  
Cholesterol influences many of the biophysical properties of membranes and is nonrandomly distributed between cellular organelles, subdomains of membranes, and leaflets of the membrane bilayer. In combination with the high dynamics of cholesterol distribution, this offers many possibilities for regulation of membrane-embedded receptors. Depending on the receptor, cholesterol can have a strong influence on the affinity state, on the binding capacity, and on signal transduction. Most important, cholesterol may stabilize receptors in defined conformations related to their biological functions. This may occur by direct molecular interaction between cholesterol and receptors. In this review, we discuss the functional dependence of the nicotinic acetylcholine receptor as well as different G protein-coupled receptors on the presence of cholesterol.  相似文献   

4.
Together with the estrogen receptor (ER) alpha, estrogen receptor beta (ERβ) mediates many of the physiological effects of estrogens. As ERβ is crucially involved in a variety of important physiological processes, its activity should be tightly regulated. ERβ regulation is achieved by hormone binding as well as by posttranslational modifications of the receptor. Furthermore, ERβ expression levels are under circadian control and can be regulated by DNA methylation of the ERβ promoter region. There are also a number of factors that can interfere with ERβ activity, such as phytoestrogens, endocrine disruptive chemicals, and growth factors. In this article, we outline different mechanisms of ERβ regulation and how they are implicated in various diseases. We also discuss how these insights might help to specifically target ERβ in drug design.  相似文献   

5.
Structure and function of the type 1 insulin-like growth factor receptor   总被引:18,自引:1,他引:17  
The type 1 insulin-like growth factor receptor (IGF-1R), a transmembrane tyrosine kinase, is widely expressed across many cell types in foetal and postnatal tissues. Activation of the receptor following binding of the secreted growth factor ligands IGF-1 and IGF-2 elicits a repertoire of cellular responses including proliferation, and the protection of cells from programmed cell death or apoptosis. As a result, signalling through the IGF-1R is the principal pathway responsible for somatic growth in foetal mammals, whereas somatic growth in postnatal animals is achieved through the synergistic interaction of growth hormone and the IGFs. Forced overexpression of the IGF-1R results in the malignant transformation of cultured cells: conversely, downregulation of IGF-1R levels can reverse the transformed phenotype of tumour cells, and may render them sensitive to apoptosis in vivo. Elevated levels of IGF-IR are observed in a variety of human tumour types, whereas epidemiological studies implicate the IGF-1 axis as a predisposing factor in the pathogenesis of human breast and prostate cancer. The IGF-1R has thus emerged as a therapeutic target for the development of antitumour agents. Recent progress towards the elucidation of the three-dimensional structure of the extracellular domain of the IGF-1R represents an opportunity for the rational assembly of small molecule antagonists of receptor function for clinical use.  相似文献   

6.
The thyrotropin (TSH) receptor plays a preeminent role in thyroid physiology and disease. TSH, acting through the TSH receptor, is the major stimulator of thyroid cell growth, differentiation and function. In Graves' disease, the TSH receptor is the target of stimulating antibodies that cause hyperthyroidism. Although still a topic of debate, the TSH receptor has been implicated in the pathogenesis of the endocrine ophthalmopathy associated with Graves' disease. Blocking antibodies against the TSH receptor are involved in the development of hypothyroidism in a subset of patients with autoimmune hypothyroidism. Transplacental passage of stimulating or blocking TSH receptor antibodies from a mother with autoimmune thyroid disease may result in transient hyper- or hypothyroidism in early infancy. During pregnancy, the placental hormone human choriogonadotropin (hCG) can cause gestational hyperthyroidism through cross-reaction with the TSH receptor. Gestational hyperthyroidism may also be involved in the pathogenesis of hyperemesis gravidarum. Trophoblast tumors secreting hCG are a rare cause of hyperthyroidism. Somatic activating mutations of the TSH receptor have been identified as a molecular cause of toxic adenomas, whereas activating mutations in the germline give rise to nonautoimmune familial hyperthyroidism or sporadic congenital hyperthyroidism. These gain-of-function mutations are dominant, and one mutated allele is sufficient to result in disease. Inactivating germline mutations of both TSH receptor alleles lead to variable degrees of resistance to TSH, encompassing a spectrum ranging from euthyroid hyperthyrotropinemia to overt hypothyroidism with thyroid hypoplasia. Received 31 January 2001; received after revision 3 April 2001; accepted 3 April 2001  相似文献   

7.
8.
9.
Members of the ionotropic glutamate receptor (iGluR) family have between 4 and 12 consensus asparagine (N)-linked glycosylation sites. They are localized on the extracellular N-termini, and the loop between the penultimate and last transmembrane domains. These regions also contain the essential elements for formation of the ligand binding site. N-linked glycosylation does not appear to be essential for formation of the ligand binding site per se, but there are demonstrated interactions between glycosylation state and ligand binding affinity, receptor physiology, susceptibility to allosteric modulation and, in some cases, trafficking. There is no indication of a general role for N-linked glycosylation in iGluRs; instead the effects of glycosylation vary among glutamate receptor subtypes and splice variants, with specific effects on structure or function with different subunits.  相似文献   

10.
11.
12.
13.
Summary JH III is the only JH detected by GLC-MS in medium from in vitro incubations of corpora allata of adult females ofCalliphora vomitoria. When corpora allata were removed from females at various times during the reproductive cycle and the JH III produced by the glands in vitro measured by a JH III radioimmunoassay, an increase in the level of synthesis was found to occur before previtellogenesis (0–24 h). A second increase appeared at the onset of vitellogenesis (72–83 h) and continued until the end of vitellogenesis (96 h) and the occurrence of chorionation (120 h). Since sexual receptivity develops with vitellogenesis, the significantly higher levels of JH III biosynthesis in vitro at this time supports a possible role for JH in the acquisitive of receptivity.  相似文献   

14.
Summary The third component of the pig complement system (C3) was isolated in hemolytically active form and characterized. The C3 component is a -globulin with the molecular weight of 191,000 and is composed of 2 non-identical polypeptide chains of Mt 112,000 and 74,000. The isolated C3 can be used for the detection of the C3b receptor on the membranes of heterologous peritoneal macrophages.  相似文献   

15.
16.
Nuclear receptor coactivator 4 (NcoA4), also known as androgen receptor-associated protein 70 (ARA70), was initially discovered as a component of Ret-Fused Gene expressed in a subset of papillary thyroid carcinomas. Subsequent studies have established NcoA4 as a coactivator for a variety of nuclear receptors, including peroxisome proliferator activated receptors α and γ, and receptors for steroid hormones, vitamins D and A, thyroid hormone, and aryl hydrocarbons. While human NcoA4 has both LXXLL and FXXLF motifs that mediate p160 coactivator nuclear receptor interactions, this ubiquitously expressed protein lacks clearly defined functional domains. Several studies indicate that NcoA4 localizes predominantly to the cytoplasm and affects ligand-binding specificity of the androgen receptor, which has important implications for androgen-independent prostate cancer. Two NcoA4 variants, which may exert differential activities, have been identified in humans. Recent studies suggest that NcoA4 may play a role in development, carcinogenesis, inflammation, erythrogenesis, and cell cycle progression that may be independent of its role as a receptor coactivator. This review summarizes what is currently known of the structure, expression, regulation, and potential functions of this unique protein in cancerous and non-cancerous pathologies.  相似文献   

17.
Zusammenfassung Das Studium der sich entwickelnden entzündlichen Reaktion auf mit attenuiertem und virulentem Poliovirus infizierten Affen zeigte, dass diese in der Pathogenese der Poliomyelitis eine defensive und eine aggressive Rolle spielt. Die erstere umfasst eine unspezifische, sekundäre Antwort auf die Nervenschädigung (Neuronophagie) und eine spezifische, primäre Reaktion auf das virale Antigen (lokale Immunreaktion). Die letztere ist vor allem dadurch gekennzeichnet, dass einige der mobilen entzündlichen Elemente das Poliovirus replizieren und weiter verbreiten können.  相似文献   

18.
The presence of a specific receptor for 5alpha-androstan-3beta, 17beta-diol (3beta-diol) in the pituitary cytosol from prepubertal male rats was demonstrated. Its characteristics were: Ka = 5.2.10(7) M-1 KD = 1.9 X 10(-8) M, number of specific binding = 8.7 10(-14) moles per mg of proteins. Its sedimentation constant was 3 S. Competition assays showed that only 3beta-diol itself and estrogens were able to compete for the binding sites for 3beta-diol. Androgens, including 3alpha-diol, were inefficient. This receptor was found only in pituitary cytosol, it was missing from hypothalamic or cortical cytosols. This special localization seemed to foreshadow a specific role for 3beta-diol in the anterior hypophysis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号