首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Several studies have tested for long‐range dependence in macroeconomic and financial time series but very few have assessed the usefulness of long‐memory models as forecast‐generating mechanisms. This study tests for fractional differencing in the US monetary indices (simple sum and divisia) and compares the out‐of‐sample fractional forecasts to benchmark forecasts. The long‐memory parameter is estimated using Robinson's Gaussian semi‐parametric and multivariate log‐periodogram methods. The evidence amply suggests that the monetary series possess a fractional order between one and two. Fractional out‐of‐sample forecasts are consistently more accurate (with the exception of the M3 series) than benchmark autoregressive forecasts but the forecasting gains are not generally statistically significant. In terms of forecast encompassing, the fractional model encompasses the autoregressive model for the divisia series but neither model encompasses the other for the simple sum series. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Fractionally integrated autoregressive moving-average (ARFIMA) models have proved useful tools in the analysis of time series with long-range dependence. However, little is known about various practical issues regarding model selection and estimation methods, and the impact of selection and estimation methods on forecasts. By means of a large-scale simulation study, we compare three different estimation procedures and three automatic model-selection criteria on the basis of their impact on forecast accuracy. Our results endorse the use of both the frequency-domain Whittle estimation procedure and the time-domain approximate MLE procedure of Haslett and Raftery in conjunction with the AIC and SIC selection criteria, but indicate that considerable care should be exercised when using ARFIMA models. In general, we find that simple ARMA models provide competitive forecasts. Only a large number of observations and a strongly persistent time series seem to justify the use of ARFIMA models for forecasting purposes.  相似文献   

3.
    
Hierarchical time series arise in various fields such as manufacturing and services when the products or services can be hierarchically structured. “Top-down” and “bottom-up” forecasting approaches are often used for forecasting such hierarchical time series. In this paper, we develop a new hybrid approach (HA) with step-size aggregation for hierarchical time series forecasting. The new approach is a weighted average of the two classical approaches with the weights being optimally chosen for all the series at each level of the hierarchy to minimize the variance of the forecast errors. The independent selection of weights for all the series at each level of the hierarchy makes the HA inconsistent while aggregating suitably across the hierarchy. To address this issue, we introduce a step-size aggregate factor that represents the relationship between forecasts of the two consecutive levels of the hierarchy. The key advantage of the proposed HA is that it captures the structure of the hierarchy inherently due to the combination of the hierarchical approaches instead of independent forecasts of all the series at each level of the hierarchy. We demonstrate the performance of the new approach by applying it to the monthly data of ‘Industrial’ category of M3-Competition as well as on Pakistan energy consumption data.  相似文献   

4.
    
An analytical model has been developed in the present paper based on a square root transformation of white Gaussian noise. The mathematical expectation and variance of the new asymmetric distribution generated by white Gaussian noise after a square root transformation are analytically deduced from the preceding four terms of the Taylor expansion. The model was first evaluated against numerical experiments and a good agreement was obtained. The model was then used to predict time series of wind speeds and highway traffic flows. The simulation results from the new model indicate that the prediction accuracy could be improved by 0.1–1% by removing the mean errors. Further improvement could be obtained for non‐stationary time series, which had large trends. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
    
We explore the benefits of forecast combinations based on forecast‐encompassing tests compared to simple averages and to Bates–Granger combinations. We also consider a new combination algorithm that fuses test‐based and Bates–Granger weighting. For a realistic simulation design, we generate multivariate time series samples from a macroeconomic DSGE‐VAR (dynamic stochastic general equilibrium–vector autoregressive) model. Results generally support Bates–Granger over uniform weighting, whereas benefits of test‐based weights depend on the sample size and on the prediction horizon. In a corresponding application to real‐world data, simple averaging performs best. Uniform averages may be the weighting scheme that is most robust to empirically observed irregularities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
    
We investigate the seasonal unit root properties of monthly industrial production series for 16 OECD countries within the context of a structural time series model. A basic version of this model assumes that there are 11 such seasonal unit roots. We propose to use model selection criteria (AIC and BIC) to examine if one or more of these are in fact stationary. We generally find that when these criteria indicate that a smaller number of seasonal unit roots can be assumed and hence that some seasonal roots are stationary, the corresponding model also gives more accurate one‐step‐ahead forecasts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
    
We investigate the accuracy of capital investment predictors from a national business survey of South African manufacturing. Based on data available to correspondents at the time of survey completion, we propose variables that might inform the confidence that can be attached to their predictions. Having calibrated the survey predictors' directional accuracy, we model the probability of a correct directional prediction using logistic regression with the proposed variables. For point forecasting, we compare the accuracy of rescaled survey forecasts with time series benchmarks and some survey/time series hybrid models. In addition, using the same set of variables, we model the magnitude of survey prediction errors. Directional forecast tests showed that three out of four survey predictors have value but are biased and inefficient. For shorter horizons we found that survey forecasts, enhanced by time series data, significantly improved point forecasting accuracy. For longer horizons the survey predictors were at least as accurate as alternatives. The usefulness of the more accurate of the predictors examined is enhanced by auxiliary information, namely the probability of directional accuracy and the estimated error magnitude.  相似文献   

8.
    
Most long memory forecasting studies assume that long memory is generated by the fractional difference operator. We argue that the most cited theoretical arguments for the presence of long memory do not imply the fractional difference operator and assess the performance of the autoregressive fractionally integrated moving average (ARFIMA) model when forecasting series with long memory generated by nonfractional models. We find that ARFIMA models dominate in forecast performance regardless of the long memory generating mechanism and forecast horizon. Nonetheless, forecasting uncertainty at the shortest forecast horizon could make short memory models provide suitable forecast performance, particularly for smaller degrees of memory. Additionally, we analyze the forecasting performance of the heterogeneous autoregressive (HAR) model, which imposes restrictions on high-order AR models. We find that the structure imposed by the HAR model produces better short and medium horizon forecasts than unconstrained AR models of the same order. Our results have implications for, among others, climate econometrics and financial econometrics models dealing with long memory series at different forecast horizons.  相似文献   

9.
    
In this paper we present an intelligent decision‐support system based on neural network technology for model selection and forecasting. While most of the literature on the application of neural networks in forecasting addresses the use of neural network technology as an alternative forecasting tool, limited research has focused on its use for selection of forecasting methods based on time‐series characteristics. In this research, a neural network‐based decision support system is presented as a method for forecast model selection. The neural network approach provides a framework for directly incorporating time‐series characteristics into the model‐selection phase. Using a neural network, a forecasting group is initially selected for a given data set, based on a set of time‐series characteristics. Then, using an additional neural network, a specific forecasting method is selected from a pool of three candidate methods. The results of training and testing of the networks are presented along with conclusions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
    
In this paper we develop a semi‐parametric approach to model nonlinear relationships in serially correlated data. To illustrate the usefulness of this approach, we apply it to a set of hourly electricity load data. This approach takes into consideration the effect of temperature combined with those of time‐of‐day and type‐of‐day via nonparametric estimation. In addition, an ARIMA model is used to model the serial correlation in the data. An iterative backfitting algorithm is used to estimate the model. Post‐sample forecasting performance is evaluated and comparative results are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This paper forecasts Daily Sterling exchange rate returns using various naive, linear and non-linear univariate time-series models. The accuracy of the forecasts is evaluated using mean squared error and sign prediction criteria. These show only a very modest improvement over forecasts generated by a random walk model. The Pesaran–Timmerman test and a comparison with forecasts generated artificially shows that even the best models have no evidence of market timing ability.©1997 John Wiley & Sons, Ltd.  相似文献   

12.
We presented people with trended and untrended time series and asked them to estimate the probability that the next point would be below each of seven different reference values. The true probabilities that the point would be below these values were 0.01, 0.10, 0.25, 0.50, 0.75, 0.90 and 0.99. People overestimated probabilities of less than 0.50 and underestimated those of more than 0.50. Consequently, their subjective probability distributions were flatter than they should have been: people appeared to be under confident in their estimates of where the next point would lie. This bias was greater for the trended series. It was also greater in a second experiment in which people estimated the probability that the next item would be above the reference values. We discuss reasons for these effects and consider their implications for decision making.  相似文献   

13.
    
Using a structural time‐series model, the forecasting accuracy of a wide range of macroeconomic variables is investigated. Specifically of importance is whether the Henderson moving‐average procedure distorts the underlying time‐series properties of the data for forecasting purposes. Given the weight of attention in the literature to the seasonal adjustment process used by various statistical agencies, this study hopes to address the dearth of literature on ‘trending’ procedures. Forecasts using both the trended and untrended series are generated. The forecasts are then made comparable by ‘detrending’ the trended forecasts, and comparing both series to the realised values. Forecasting accuracy is measured by a suite of common methods, and a test of significance of difference is applied to the respective root mean square errors. It is found that the Henderson procedure does not lead to deterioration in forecasting accuracy in Australian macroeconomic variables on most occasions, though the conclusions are very different between the one‐step‐ahead and multi‐step‐ahead forecasts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
    
The intermittency of the wind has been reported to present significant challenges to power and grid systems, which intensifies with increasing penetration levels. Accurate wind forecasting can mitigate these challenges and help in integrating more wind power into the grid. A range of studies have presented algorithms to forecast the wind in terms of wind speeds and wind power generation across different timescales. However, the classification of timescales varies significantly across the different studies (2010–2014). The timescale is important in specifying which methodology to use when, as well in uniting future research, data requirements, etc. This study proposes a generic statement on how to classify the timescales, and further presents different applications of these forecasts across the entire wind power value chain.  相似文献   

15.
In this paper we present results of a simulation study to assess and compare the accuracy of forecasting techniques for long‐memory processes in small sample sizes. We analyse differences between adaptive ARMA(1,1) L‐step forecasts, where the parameters are estimated by minimizing the sum of squares of L‐step forecast errors, and forecasts obtained by using long‐memory models. We compare widths of the forecast intervals for both methods, and discuss some computational issues associated with the ARMA(1,1) method. Our results illustrate the importance and usefulness of long‐memory models for multi‐step forecasting. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
    
We consider the linear time‐series model yt=dt+ut(t=1,...,n), where dt is the deterministic trend and ut the stochastic term which follows an AR(1) process; ut=θut−1t, with normal innovations ϵt. Various assumptions about the start‐up will be made. Our main interest lies in the behaviour of the l‐period‐ahead forecast yn+1 near θ=1. Unlike in other studies of the AR(1) unit root process, we do not wish to ask the question whether θ=1 but are concerned with the behaviour of the forecast estimate near and at θ=1. For this purpose we define the sth (s=1,2) order sensitivity measure λl(s) of the forecast yn+1 near θ=1. This measures the sensitivity of the forecast at the unit root. In this study we consider two deterministic trends: dtt and dtttt. The forecast will be the Best Linear Unbiased forecast. We show that, when dtt, the number of observations has no effect on forecast sensitivity. When the deterministic trend is linear, the sensitivity is zero. We also develop a large‐sample procedure to measure the forecast sensitivity when we are uncertain whether to include the linear trend. Our analysis suggests that, depending on the initial conditions, it is better to include a linear trend for reduced sensitivity of the medium‐term forecast. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
    
This paper is concerned with modelling time series by single hidden layer feedforward neural network models. A coherent modelling strategy based on statistical inference is presented. Variable selection is carried out using simple existing techniques. The problem of selecting the number of hidden units is solved by sequentially applying Lagrange multiplier type tests, with the aim of avoiding the estimation of unidentified models. Misspecification tests are derived for evaluating an estimated neural network model. All the tests are entirely based on auxiliary regressions and are easily implemented. A small‐sample simulation experiment is carried out to show how the proposed modelling strategy works and how the misspecification tests behave in small samples. Two applications to real time series, one univariate and the other multivariate, are considered as well. Sets of one‐step‐ahead forecasts are constructed and forecast accuracy is compared with that of other nonlinear models applied to the same series. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The problem of estimating unknown observational variances in multivariate dynamic linear models is considered. Conjugate procedures are possible for univariate models and also for special very restrictive common components models but they are not generally applicable. However, for clarity of operation and in order to avoid numerical integration, it is desirable to have conjugacy or approximate conjugacy. Such an approximate procedure is proposed based upon a simple analytic approximation. It is exact for the sub-class of conjugate models and improves on a previous procedure based upon the Robust filter.  相似文献   

19.
Empirical mode decomposition (EMD)‐based ensemble methods have become increasingly popular in the research field of forecasting, substantially enhancing prediction accuracy. The key factor in this type of method is the multiscale decomposition that immensely mitigates modeling complexity. Accordingly, this study probes this factor and makes further innovations from a new perspective of multiscale complexity. In particular, this study quantitatively investigates the relationship between the decomposition performance and prediction accuracy, thereby developing (1) a novel multiscale complexity measurement (for evaluating multiscale decomposition), (2) a novel optimized EMD (OEMD) (considering multiscale complexity), and (3) a novel OEMD‐based forecasting methodology (using the proposed OEMD in multiscale analysis). With crude oil and natural gas prices as samples, the empirical study statistically indicates that the forecasting capability of EMD‐based methods is highly reliant on the decomposition performance; accordingly, the proposed OEMD‐based methods considering multiscale complexity significantly outperform the benchmarks based on typical EMDs in prediction accuracy.  相似文献   

20.
    
An underlying assumption in Multivariate Singular Spectrum Analysis (MSSA) is that the time series are governed by a linear recurrent continuation. However, in the presence of a structural break, multiple series can be transferred from one homogeneous state to another over a comparatively short time breaking this assumption. As a consequence, forecasting performance can degrade significantly. In this paper, we propose a state-dependent model to incorporate the movement of states in the linear recurrent formula called a State-Dependent Multivariate SSA (SD-MSSA) model. The proposed model is examined for its reliability in the presence of a structural break by conducting an empirical analysis covering both synthetic and real data. Comparison with standard MSSA, BVAR, VAR and VECM models shows the proposed model outperforms all three models significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号