首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
基于粒子群优化的BP神经网络预测方法及其应用研究   总被引:1,自引:0,他引:1  
本文提出了一种基于粒子群优化的BP神经网络预测方法.该方法利用粒子群优化算法全局搜索BP神经网络的权值和阈值,并利用优化后的BP网络建立预测模型对经济指标进行预测.仿真实验结果表明,该方法克服了传统BP神经网络本身所存在的局部最小值和训练速度慢等不足,能够较好应用于定量经济指标预测,有效提高了预测的精度.  相似文献   

2.
基于粒子群算法优化的T-S型模糊神经网络控制器   总被引:3,自引:1,他引:3  
粒子群优化(PSO)算法是一种新颖的演化算法,该算法通过粒子间的相互作用在复杂搜索空间中发现最优区域,其优势在于简单而功能强大。提出一种T-S型模糊神经网络控制器,采用PSO算法对模糊神经网络的前件参数和后件参数进行寻优,从而实现了模糊规则的自动调整、修改和完善。通过对非线性和时变被控对象的仿真研究,结果表明采用粒子群优化算法可以实现参数的全局快速寻优,而且优化后的T-S型模糊神经网络控制器能获得良好的控制性能。  相似文献   

3.
为了有效缓解当前交通拥堵问题,结合时下流行的智能交通系统,本文将粒子滤波算法引入短时交通流预测过程中,提出一种基于粒子滤波与神经网络的预测算法。该系统通过BP神经网络的非线性映射功能,分裂选择适当的权值,在多次训练之后能够提高算法中粒子的多样性,改善算法滤波的性能,最终达到提高预测精度的目的。另外,本文以河南省新乡市交通局公交和出租车数据作为数据来源,通过与传统的粒子滤波算法和BP算法的预测结果进行对比,发现本文所提出的方法对短时交通流预测具有更好的预测精度。  相似文献   

4.
5.
为克服粒子群优化算法容易陷入局部最优的缺点,根据混沌运动的随机性、遍历性特点,提出一种基于混沌思想的粒子群优化算法(CPSO).该算法利用种群适应度方差进行早熟收敛判断,实现对进化过程的监视,当发现种群陷入局部最优时,对种群进行混沌初始化,帮助种群摆脱局部最优点.对4种典型测试函数的仿真结果表明,改进算法明显减少了种群陷入局部最优的可能性,其全局寻优能力明显强于标准粒子群优化算法.  相似文献   

6.
PID参数优化是控制领域的热点,其控制效果与比例、积分、微分参数有直接关系.为了改善系统性能,提出用一种改进的粒子群优化算法对PID控制器参数进行优化.该算法引入进化速度因子和聚集度因子对权值进行改进,进而改进了速度更新公式,并引入飞行时间因子以改进位置更新公式.通过3种典型函数证明了该算法的优越性,加快了收敛速度,提高了寻优效率.以典型二阶被控模型为研究对象,将上述算法与其他粒子群算法进行对比,表明改进的粒子群算法得到的PID参数具有更好的控制性能.  相似文献   

7.
针对软件缺陷测试任务中的准确度问题,提出一种基于优化BP神经网路的软件缺陷预测方法 .该方法首先采用4层BP神经网络构建多层感知模型,并结合模糊控制原理实现任意复杂非线性关系逼近.然后通过灰狼优化算法克服BP神经网络的局部搜索陷入,从而解决其参数设置依赖性问题.实验结果表明,相比于PSO-BP算法和SA-BP算法,该算法的仿真拟合效果最优,表现出了更高的软件缺陷预测准确度.  相似文献   

8.
粒子群算法具有计算简单,收敛速度快和良好的全局与局部收敛能力等特点.通过对珩磨加工工艺参数的分析,构建了基于粒子群算法的珩磨加工参数智能选择模型,在理论模型的基础上通过实验数据对模型参数进行了优化.研究证明该方法用于珩磨加工工艺参数的选择具有可靠性高、选择操作简单、实用性强等优点.  相似文献   

9.
基于BP神经网络的干热风灾害预测   总被引:1,自引:0,他引:1  
干热风是我国新疆,西北等地农业气象灾害之一,其形成因素呈现复杂的非线性关系.利用传统方法很难建立起一个精确完善的预测模型.人工神经网络具有强大的非线性映射能力,尤其是BP神经网络在预测领域中被广泛应用.本文利用BP神经网络对干热风灾害进行了预测.结果表明,基于BP神经网络的干热风预测模型误差小,能达到满意的效果.  相似文献   

10.
多传感器的像素级图像融合中,如果对源图像进行线性运算以得到融合图像,源图像的置信度取值一般只能由经验和个人主观感觉来确定,并不能得到令人满意的融合效果.本文针对这一问题提出了一种基于粒子群优化算法的像素级图像融合的算法.该算法可以根据融合的目的采用不同的融合指标,应用粒子群优化算法得到比较满意的融合图像.实验结果表明该算法优于其它的几种像素级图像融合算法.  相似文献   

11.
本文首先阐述了BP神经网络和ABC算法的基本概念,结合现阶段环境空气质量需求,明确了雾霾天气预测预警的必要性,然后结合安徽省大气质量指数数据,从空气质量等级评估、预测指标体系构建和雾霾天气预测模型选择等方面,研究了基于ABC算法优化BP神经网络的雾霾天气预警模型,以期进一步提高雾霾等级评估与预测的准确性,提高政府相关部门决策的时效性。  相似文献   

12.
煤层气是近一二十年在国际上崛起的洁净、优质能源和化石能源的新矿种,其地质研究对能源的补充意义重大.该文对煤层气的含量提出基于量子粒子群优化的支持向量回归算法进行预测.支持向量回归算法是一种非线性的基于内核的回归方法,它可以采用良好的函数逼近,并具有泛化能力.由于支持向量回归算法的参数对预测性能影响很大,量子粒子群优化在本研究中可用于选择支持向量回归算法参数.本文选用基岩深度,煤层的厚度,断层间的水平距离,煤的挥发分作为煤层气含量的预测模型的输入向量,经过比较量子粒子群优化的支持向量回归算法和支持向量回归算法之间的煤层气体含量的预测误差表明,量子粒子群优化得到的煤层气体含量的预测精度均高于支持向量回归算法的精度.  相似文献   

13.
为了提高边坡稳定性预测的精度,保障边坡工程的安全,提出基于粒子群优化算法支持向量机的预测模型。采用粒子群优化算法不断进行搜索迭代获取支持向量机模型的最优参数,避免了支持向量机人为选取参数的盲目性和随意性。通过Matlab编程,应用实例证明:该模型的预测精度较高,预测样本的平均相对误差为3.581 9%,计算速度较快,优于改进的BP算法、GA-BP算法和改进支持向量机算法,在实际的工程应用中有着良好的应用前景。  相似文献   

14.
针对采用正交频分复用的认知无线电网络中的多用户资源分配,提出一种在系统传输功率额定值、主用户的干扰阈值、次用户间的比例公平性等约束条件下能使系统容量最大化的资源分配算法.首先基于遗传算法设计一种子载波分配方案,然后采用基于多级惩罚函数的粒子群优化算法进行功率分配.仿真表明,所提算法能获得接近于最优算法的系统容量,且能提高用户间的比例公平性,同时降低计算复杂度.  相似文献   

15.
为解决深海资源探测图像识别难题,提出一种基于粒子群优化的图像暗边缘检测优化算法。该算法通过指数型线性单元和高斯误差线性单元改进激活函数,根据Marr-Hildreth算子检测结果并结合改进激活函数构建暗边缘检测算法,利用粒子群对改进暗边缘检测算法进行训练和优化。最后,采用不同算法对水下11个数据集进行比较的结果表明:改进算法的峰值信噪比、结构相似度和边缘保持指数最高,分别达到18.769 6 dB、0.660 7和0.834 5;图像均方误差最低,为3 750.225 3;平均检测时间为0.667 4 s,比其他对比实验中性能最好的算法缩短了14%。  相似文献   

16.
本文利用2019年12月和2020年1月至11月气象观测资料、ECMWF再分析资料和FY-4陆表温度资料,基于BP神经网络对甘肃省酒泉市一次霜冻天气进行预报分析研究.研究表明:此次霜冻天气前期受到贝加尔湖西部冷槽影响使气温下降,后期乌拉尔山高压脊东移使天气转晴,冷平流及强辐射的共同影响是此次霜冻天气的主要原因;霜冻...  相似文献   

17.
通过量子行为能增强粒子的全局寻优能力,引进了量子粒子群算法(QPSO),用于求解信赖域(TR)算法的子问题,并将这2种算法有效结合.数值实验表明,新算法具有良好的全局寻优能力,并有效提高收敛速度和避免早熟.  相似文献   

18.
为了提高BP神经网络预测模型对电动汽车电池SOC值预测的准确性,采用遗传算法GA和粒子群算法PSO两种优化算法分别对BP神经网络进行优化,即优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型以求得最优解。将该方法应用到预测电动汽车电池的SOC值中并与实际测量的SOC值进行验证比较。仿真实验表明,经过粒子群算法优化后的BP神经网络预测电动汽车SOC值的误差在1.0%~4.4%之间,明显优于采用遗传算法优化的误差范围1.6%~10%和传统的BP神经网络误差范围2.0%~72%。  相似文献   

19.
为解决NP难问题中算法应用领域划分问题,分别运用不同算法对不同问题规模的TSP问题进行求解,寻求最优路径规划.采用随机数据来最大化模拟实际情况,设置了5、10、15、20、30和100个随机城市坐标点,分别采用PSO算法、C-PSO算法、GA算法和ACO算法进行求解,求解一条经过各城市且一次的旅行最低费用的路线,分析比较四种算法的鲁棒性与实效性.结果表明:基于C-PSO算法在NP难问题中的具有良好鲁棒性和较短的运行时间,在问题规模小时,可以采用PSO算法和ACO算法;在问题规模大时,可以采用C-PSO算法.  相似文献   

20.
煤与瓦斯突出是危害煤矿安全生产的主要因素,因此做好突出强度的预测具有重要的意义。将煤与瓦斯突出的综合影响因素作为特征向量,构建了基于粒子群优化的BP神经网络煤与瓦斯突出强度预测模型。实验结果表明,煤与瓦斯突出强度的预测值与实际值吻合度较好,该方法可有效地提高预测准确度,对实际生产具有一定的指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号