首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
地基液化是导致地下结构在地震中发生严重震害的重要威胁之一。以北京某箱型框架式地铁车站上穿一定厚度的可液化土层为工程背景,基于有限差分软件FLAC3D建立了含有可液化土层的场地土-地下结构相互作用数值模型,分析了场地液化分布特征、周围场地位移沉降及矢量特征、地下结构动力反应及上浮特征等。结果表明,地下结构的存在加大了可液化场地的地层变形,但会显著降低结构上方一定范围内地表土体的地震响应;可液化土层中的孔压发展表现为“起始缓慢增长、最后急速增加至峰值并保持一定时间,最后缓慢消散”的规律,孔压达到峰值的时刻与输入地震动的峰值时刻接近;结构的竖向位移变化表现出“起始少量下沉,然后振荡上升,随后急剧上浮,最后缓慢下降”的发展阶段;液化场地中,地铁车站结构附近的土体部分上浮、部分沉陷是造成地表土体开裂的内因;下部可液化土层对上穿的地下结构的地震响应具有一定的隔震效果。  相似文献   

2.
以南京地铁建设为工程背景,根据《建筑抗震设计规范》(GB 50011-2010)中场地类别的分类方法,保持场地覆盖层厚度不变,通过改变场地等效剪切波速,设计出典型的Ⅱ、Ⅲ、Ⅳ类工程场地类别.采用大型有限元分析软件ABAQUS,考虑土体与混凝土的非线性以及土与结构接触非线性,研究地铁车站在规范规定的不同场地类别条件下地下结构的层间位移和位移角反应特征以及结构关键部位的应力反应特征.结果表明:不同场地类别对地铁地下车站结构地震反应的影响规律和影响程度有所不同.总体来看,在较差场地类别条件下,基岩输入峰值加速度峰值对层间位移角幅值的影响程度较大,且对车站结构下层层间位移角幅值的影响更大.在本文所有的输入地震动强度条件下,Ⅱ类场地下地铁车站结构基本处于弹性工作状态,而Ⅳ类场地下地铁车站结构在中小地震发生时层间位移角很容易进入整体弹塑性工作状态.同时,场地类别越差,车站结构整体残余变形越容易发生,造成结构的残动内力也迅速增加.  相似文献   

3.
可液化土层的位置对土层-地下结构地震反应的影响   总被引:1,自引:0,他引:1  
为了研究不同位置的液化土层对地下结构地震反应的影响,采用PL-Fin土体液化本构模型,使用FLAC3D进行了研究,总结了液化土层发生液化大变形时刻液化区分布、孔隙水压力与超静孔隙水压力比变化规律及差异、地下结构的位移及差异沉降规律,并与非液化场地下的地下结构地震反应进行了对比.主要结论有:当结构底部存在液化土层时,引起的结构位移最大,使结构下沉;结构两侧的土体液化会引起结构上浮,并使侧墙水平向向层间位移和顶底板竖向层间位移增加;结构整体位于液化土层中时,土体位移、结构位移和结构层间位移差都不是最大值,仅研究结构整体位于液化土层的规律存在不足;结构周围、两侧、底部、底部45°位置、左右两侧和底部45°位置以及底部和底部45°位置存在液化土层(B+C)位置共计6种工况下结构顶板y向层间位移变化规律基本一致,但车站不同位置存在液化土层,土层液化的反应和对结构的影响存在一定差异;液化大变形发生在孔隙水压力和超孔压比突增后的1~3s后,因此可由孔隙水压力和超孔压比的突变判断是否发生液化大变形.  相似文献   

4.
根据前人提出的土体内外摩擦角随土体位移逐渐发挥的理论,综合考虑绕墙趾转动的位移模式与地震力对土压力的影响,利用水平层分析法推导了挡土墙地震主动土压力沿墙高分布、合力及合力作用点高度的理论公式,分析了墙体位移量与地震加速度系数对土压力分布、最危险滑裂面倾角、合力作用点高度及主动侧土压力系数的影响.分析结果表明,土压力强度呈非线性分布,所得主动土压力合力经简化之后与Mononobe-Okabe理论相同,滑裂面倾角随地震系数增加而减小,合力随地震系数增大而减小,主动侧土压力系数随墙背倾角和地震系数的增大而增大.经有限元软件模拟验证,本文计算所得结果与模拟所得土压力分布曲线变化趋势基本吻合.  相似文献   

5.
以软土、中软土和中硬土3种均质地基作为研究基准,采用广义层间位移谱,结合有限元计算模型,考虑场地类型和距车站水平距离两个影响因素,分析地铁车站的存在对临近建筑结构的动力影响.结果表明,在地震动作用下,地铁车站的存在将增加临近地表建筑结构的层间位移角,给结构的安全性和抗震性能带来不利影响;随着距离车站水平距离的增加,地铁车站的影响将逐渐减小.结合本文算例初步认为,在软土场地条件下,地铁车站的影响最为显著;同时给出不同场地条件下,地铁车站所能影响的区域范围以供参考.软土场地中,地铁车站对距离车站2.0倍车站水平宽度范围外的地表建筑的影响仍十分明显,需要妥善考虑;而在硬土场地条件下,当距离车站的水平距离超过1.5倍车站宽度时,车站的影响已可忽略.  相似文献   

6.
埋深对地下结构地震液化响应的影响   总被引:6,自引:0,他引:6  
应用非线性液固两相体动力有限元方法研究饱和可液化土中地下结构在水平地震作用下埋深的响应。分析了地震液化情况下地下结构埋深对于结构上浮、加速度、水平位移以及响应结构内力的影响,讨论了非液化土中地铁地下结构地震响应随埋深的影响。结果表明,埋深的增加可以减少地铁地下结构由于土体液化所导致的结构上浮;同时,虽然地下结构地震作用所导致的内力随着埋深的增加有小幅度的上升,但由于深埋地铁地下结构的强度往往比浅埋的为高,因此在相同水平地震的作用下,浅埋地铁结构可能更加危险。  相似文献   

7.
液化侧扩地基中桩基的有限元分析   总被引:1,自引:0,他引:1  
运用ANSYS有限元分析软件,建立桩基在侧向荷载作用下的有限元计算模型.考虑桩土共同工作的非线性关系.对土弹簧单元施加侧向位移模拟在液化侧扩地基中,土体产生的侧向位移以及液化侧扩地基中的桩进行非线性有限元分析.合理地解释了地震液化引起地面大位移,对桩基产生破坏的实际震害情况.  相似文献   

8.
采用FLAC~(3D)软件建立有限差分数值模型,对有限填土路堤挡土墙的主动土压力进行研究,分析了挡土墙后有限填土由静止状态逐渐到主动极限平衡状态的过程,分别对有限填土条件下滑动面的发展规律及到达主动极限平衡状态所需要的位移、土压力的大小和分布进行了研究.结果表明:土体达到极限平衡状态所需要的位移随着路堤坡角的增大而增大;临界倾角小于依据库仑土压力理论得到的滑动面倾角;当墙后路堤边坡坡角增大至30°时,滑动面下部沿基岩面发展,上部在土体中发展;当基岩面倾角大于临界倾角时,采用库仑土压力理论将高估挡土墙的土压力.  相似文献   

9.
地铁车站等地下结构的建设,必然会引起场地土层以及临近建筑物的地震动力响应发生变化.为研究此种影响,以某典型地下车站结构为研究对象,引入了土体的非线性本构模型,同时考虑了结构与土接触面特性和地基无限域的影响.计算结果表明:由于地下结构的存在,地表一定范围内的地震动设计参数被显著放大;临近地表建筑的位移响应、框架柱剪力响应也均被显著放大.建议在地铁等地下工程的规划和设计时考虑工程建设后对地表设计地震动的影响.  相似文献   

10.
地铁车站等地下结构的建设,必然会引起场地土层以及临近建筑物的地震动力响应发生变化.为研究此种影响,以某典型地下车站结构为研究对象,引入了土体的非线性本构模型,同时考虑了结构与土接触面特性和地基无限域的影响.计算结果表明:由于地下结构的存在,地表一定范围内的地震动设计参数被显著放大;临近地表建筑的位移响应、框架柱剪力响应也均被显著放大.建议在地铁等地下工程的规划和设计时考虑工程建设后对地表设计地震动的影响.  相似文献   

11.
为了研究不同类型地震波作用下一体化地铁车站结构地震响应特性,基于ABAQUS软件建立地铁地下车站-土-地上建筑一体化结构大型三维有限元数值模型,利用典型的近、远场地震动记录,计算分析城市轨道交通枢纽一体化结构在不同地震动类型作用下的地震响应规律.结果表明:土-一体化结构体系与自由场地各阶自振频率较为接近,一体化结构的存在对场地土动力特性的影响较小,从工程的角度看可忽略不计;在土-一体化结构体系基频附近能量分布相对集中的地震波能够对一体化地铁车站结构的地震响应产生显著的影响;一体化地铁车站结构具有明显的空间效应,不同区域之间的地震反应差异明显,应该按照空间问题进行一体化地铁车站结构的抗震计算.研究成果对该类结构的抗震设计与分析具有一定的参考意义.  相似文献   

12.
为研究上盖一体化地铁车站结构的地震响应规律,以轨道交通地上-地下一体化结构体系和单体地铁车站结构体系为研究对象,开展了粉细砂场地振动台试验研究.分别从加速度和应变两方面对地铁车站结构部分进行地震响应研究,并将两种试验结果进行对比.试验结果表明:1)上盖一体化地铁车站结构振动台试验模型土体和结构相同监测点的加速度峰值随着输入地震强度的增加逐渐增大,而加速度放大系数则逐渐减小,测点加速度沿埋深的变化规律与地震动类型有关;2)上盖一体化地铁车站结构的拉应变幅值随着地震强度的增加呈逐渐增大的趋势,模型中柱端部的拉应变幅值最大,侧墙次之,楼板最小;3)上盖一体化地铁车站结构的加速度和应变均小于单体地铁车站结构,其中,加速度变化规律大致相同,应变幅值差异随着地震强度的增加逐渐增大,而差异增幅呈现逐渐减小并收敛的趋势.  相似文献   

13.
基于FLAC3D有限差分软件,对上覆黏土层的砂土地基地震液化响应动力可靠度进行研究,建立了黏土-砂土地基平面应变模型,通过模拟土体剪切模量的空间变异性,利用蒙特卡洛模拟方法并结合生成的非高斯随机场评估液化区面积、超孔隙水压力和地表位移,研究了不同剪切模量变异系数(COV)对地基地震液化可靠度的影响。结果表明:剪切模量变异系数越大,液化范围缩小越困难,液化范围峰值的分布范围越分散;地表水平位移和地表最大差异沉降均随剪切模量变异系数的增大而增大。  相似文献   

14.
液化场地的桩-土-上部结构振动台模型试验的研究   总被引:1,自引:1,他引:0  
文章以液化场地桩-土-结构动力相互作用体系的振动台试验研究为基础,结合非液化场地桩-土-结构动力相互作用体系的振动台试验,再现了液化场地中上部结构与桩基的震害现象;基于振动台试验,对试验现象;孔隙水压力、土体及上部结构的动力反应、桩的应变等进行了研究和分析.结果表明:液化地基使承台在震后有明显的不均匀沉降,上部结构位移...  相似文献   

15.
场地条件和地震动特性对地铁地下车站结构地震反应有重要影响,为了研究深软场地地铁地下车站结构近、远场地震反应特性,以苏州地铁一号线星海站为工程背景,基于苏州地震构造环境,建立深软地基-地铁车站结构二维非线性静动力耦合有限元分析模型,对深软场地地铁地下车站结构在近场中强震和远场强地震作用下的地震反应特性进行了数值模拟分析,得到了2种地震动作用下车站结构加速度、变形、应力反应规律和损伤特性的差异。  相似文献   

16.
针对地震作用下地铁结构动力学响应的安全问题,基于弹性地基梁理论,利用大型通用有限元计算软件ADINA建立了三层岛式地铁车站结构有限元计算模型,研究地铁的多遇地震与罕遇地震的动力学响应的影响因素,对车站进行了静力分析、谱反应分析以及动力时程分析,总结了地铁结构的地震响应规律.分析结果表明:多遇地震作用下,随着高度的增加地铁车站结构的层间位移随之增大,梁柱连接处的应力较大,楼板跨中节点的应力最小;罕遇地震作用下地铁结构变化有着相似的趋势,但是罕遇地震的位移要远大于多遇地震下的水平位移.  相似文献   

17.
为研究黄土地区地下一层地上两层地铁车站结构的抗震性能,进行包括地上、地下结构及周围土层的振动台试验研究.在简要介绍模型设计和试验工况的基础上,重点根据试验中各传感器所记录的数据,对模型土箱的边界效应、模型地基与模型结构的动力反应、土与结构的相互作用等进行分析探讨.试验结果表明:地下一层地上两层地铁车站模型结构地上部分受输入地震动峰值加速度影响较大,地上部分的最终破坏模式是整体侧向倒塌;车站模型结构地下部分受地下结构周围土层影响较大,土层位移不大时地下结构无明显破坏;地上地下结构交接处的破坏最为严重.模型车站结构的存在对土体动力反应的影响较小,并随输入地震动峰值的增大而减弱.  相似文献   

18.
文章研究液化场地对桩基的影响,得到基础液化对桩基的影响规律;以液化场地桩基变形为研究对象,通过液化判定准则与超孔压比的变化了解液化的过程,利用FLAC3D有限差分软件,分别探讨了桩身弯矩和桩-土相互作用力在地震作用下的变化以及液化作用对桩、土位移的影响,并对群桩中的角桩、边桩和中心桩弯矩幅值进行对比。研究结果表明,桩侧向位移随液化程度的加深而变大,在土体达到液化状态时,桩身弯矩和桩身剪力也达到了最大,且角桩和边桩的弯矩幅值比中心桩大。  相似文献   

19.
目的研究中软场地上大型LNG储罐的地震响应,分析桩土相互作用对上部结构的影响.方法利用有限元软件ADINA建立了1. 6×105m3刚性基础储罐与80 m桩土储罐模型;计算刚性基础储罐和桩土储罐的地震响应、桩土储罐和纯土体情况下沿地基深度分布的最大加速度值并进行对比分析.结果考虑桩-土-储罐的相互作用后除晃动波高外,其他地震响应均有不同程度的减小;长周期地震动的场地放大效应小于短周期地震动,而频谱特性复杂且具有多峰性的地震动场地放大效应最大;纯土体的场地放大效应小于有上部结构的场地放大效应.结论地震动沿土体传播具有放大效应,上部结构的存在会增大放大效果,且按照刚性地基标准设计LNG储罐可以保证其安全性.  相似文献   

20.
为提高工程中桩身侧向变形较大时纵向和横向承载单桩的设计及计算水平,考虑桩身初始微倾斜及土体的弹塑性,采用矩阵计算法得到地基水平抗力系数为常数时桩身侧向变形和内力的解及桩身最大位移、最大弯矩及其所在位置的计算方法。研究结果表明:解的计算值与模型试验值较吻合;当桩顶自由时,桩身最大位移、最大弯矩及土体屈服后桩身最大弯矩距地面的距离均随桩身初始倾角的增大而增大;桩身初始微倾斜对桩身侧向响应的影响随纵向荷载的增大而增大;桩身最大位移、最大弯矩及桩身最大弯矩距地面的距离均随纵向荷载的增大而增大,且其变化速率随纵向荷载和桩身初始倾角的增大而增大,因此,土体的弹塑性、纵向荷载及桩身初始微倾斜等对桩身侧向响应的影响不容忽视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号