首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
T Tsurimoto  T Melendy  B Stillman 《Nature》1990,346(6284):534-539
Enzymatic synthesis of DNA from the simian virus 40 origin of DNA replication has been reconstituted in vitro with eight purified components. DNA polymerase alpha-primase complex first initiates DNA synthesis at the replication origin and continues as the lagging strand polymerase. Subsequently, the DNA polymerase delta complex initiates replication on the leading strand template. Some prokaryotic DNA polymerase complexes can replace the eukaryotic polymerase delta complex. A model for polymerase switching during initiation of DNA replication is presented.  相似文献   

2.
Defects in mismatch repair promote telomerase-independent proliferation   总被引:11,自引:0,他引:11  
Rizki A  Lundblad V 《Nature》2001,411(6838):713-716
Mismatch repair has a central role in maintaining genomic stability by repairing DNA replication errors and inhibiting recombination between non-identical (homeologous) sequences. Defects in mismatch repair have been linked to certain human cancers, including hereditary non-polyposis colorectal cancer (HNPCC) and sporadic tumours. A crucial requirement for tumour cell proliferation is the maintenance of telomere length, and most tumours achieve this by reactivating telomerase. In both yeast and human cells, however, telomerase-independent telomere maintenance can occur as a result of recombination-dependent exchanges between often imperfectly matched telomeric sequences. Here we show that loss of mismatch-repair function promotes cellular proliferation in the absence of telomerase. Defects in mismatch repair, including mutations that correspond to the same amino-acid changes recovered from HNPCC tumours, enhance telomerase-independent survival in both Saccharomyces cerevisiae and a related budding yeast with a degree of telomere sequence homology that is similar to human telomeres. These results indicate that enhanced telomeric recombination in human cells with mismatch-repair defects may contribute to cell immortalization and hence tumorigenesis.  相似文献   

3.
G B Morin 《Nature》1991,353(6343):454-456
Telomeres define the ends of chromosomes; they consist of short tandemly repeated DNA sequences loosely conserved in eukaryotes (G1-8(T/A)1-4). Telomerase is a ribonucleoprotein which, in vitro, recognizes a single-stranded G-rich telomere primer and adds multiple telomeric repeats to its 3' end by using a template in the RNA moiety. In conjunction with other components, telomerase may balance the loss of telomeric repeats due to DNA replication. Another role of telomerase may be the de novo formation of telomeres. In eukaryotes like Tetrahymena, this process is an integral part of the formation of macronuclear chromosomes. In other eukaryotes this process stabilizes broken chromosomes. A case of human alpha-thalassaemia is caused by a truncation of chromosome 16 that has been healed by the addition of telomeric repeats (TTAGGG)n. Using an in vitro assay, I show here that human telomerase correctly recognizes the chromosome 16 breakpoint sequence and adds (TTAGGG)n repeats. The DNA sequence requirements are minimal and seem to define two modes of DNA recognition by telomerase.  相似文献   

4.
5.
6.
Telomeric repeat from T. thermophila cross hybridizes with human telomeres   总被引:38,自引:0,他引:38  
The ends (telomeres) of eukaryotic chromosomes must have special features to ensure their stability and complete replication. Studies in yeast, protozoa, slime moulds and flagellates show that telomeres are tandem repeats of simple sequences that have a G-rich and a C-rich strand. Mammalian telomeres have yet to be isolated and characterized, although a DNA fragment within 20 kilobases of the telomeres of the short arms of the human sex chromosomes has been isolated. Recently we showed that a chromosome from the fission yeast Schizosaccharomyces pombe could, in some cases, replicate as an autonomous mini-chromosome in mouse cells. By extrapolation from other systems, we reasoned that mouse telomeres could be added to the S. pombe chromosome ends in the mouse cells. On setting out to test this hypothesis we found to our surprise that the telomeric probe used (containing both the S. pombe and Tetrahymena thermophila repeats) hybridized to a series of discrete fragments in normal mouse DNA and DNA from a wide range of eukaryotes. We show here that the sequences hybridizing to this probe are located at the telomeres of most, if not all, human chromosomes and are similar to the Tetrahymena telomeric-repeat component of the probe.  相似文献   

7.
Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops   总被引:82,自引:0,他引:82  
W I Sundquist  A Klug 《Nature》1989,342(6251):825-829
The telomeric ends of eukaryotic chromosomes are composed of simple repeating sequences in which one DNA strand contains short tracts of guanine residues alternating with short tracts of A/T-rich sequences. The guanine-rich strand is always oriented in a 5'-3' direction towards the end of the chromosome and is extended to produce a 3' overhang of about two repeating units in species where the telomeric terminus is known. This overhang has been implicated in the formation of several unusual intra-and intermolecular DNA structures, although none of these structures has been characterized fully. We now report that oligonucleotides encoding Tetrahymena telomeres dimerize to form stable complexes in solution. This salt-dependent dimerization is mediated entirely by the 3'-terminal telomeric overhang (TT-GGGGTTGGGG) and produces complexes in which the N7 position of every guanine in the overhangs is chemically inaccessible. We therefore propose that telomeric DNA dimerizes by hydrogen bonding between two intramolecular hairpin loops, to form antiparallel quadruplexes containing cyclic guanine base tetrads. These novel hairpin dimers may be important in telomere association and recombination and could also provide a general mechanism for pairing two double helices in other recombinational processes.  相似文献   

8.
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta.   总被引:28,自引:0,他引:28  
C Masutani  R Kusumoto  A Yamada  N Dohmae  M Yokoi  M Yuasa  M Araki  S Iwai  K Takio  F Hanaoka 《Nature》1999,399(6737):700-704
Xeroderma pigmentosum variant (XP-V) is an inherited disorder which is associated with increased incidence of sunlight-induced skin cancers. Unlike other xeroderma pigmentosum cells (belonging to groups XP-A to XP-G), XP-V cells carry out normal nucleotide-excision repair processes but are defective in their replication of ultraviolet-damaged DNA. It has been suspected for some time that the XPV gene encodes a protein that is involved in trans-lesion DNA synthesis, but the gene product has never been isolated. Using an improved cell-free assay for trans-lesion DNA synthesis, we have recently isolated a DNA polymerase from HeLa cells that continues replication on damaged DNA by bypassing ultraviolet-induced thymine dimers in XP-V cell extracts. Here we show that this polymerase is a human homologue of the yeast Rad30 protein, recently identified as DNA polymerase eta. This polymerase and yeast Rad30 are members of a family of damage-bypass replication proteins which comprises the Escherichia coli proteins UmuC and DinB and the yeast Rev1 protein. We found that all XP-V cells examined carry mutations in their DNA polymerase eta gene. Recombinant human DNA polymerase eta corrects the inability of XP-V cell extracts to carry out DNA replication by bypassing thymine dimers on damaged DNA. Together, these results indicate that DNA polymerase eta could be the XPV gene product.  相似文献   

9.
Senescence and genomic integrity are thought to be important barriers in the development of malignant lesions. Human fibroblasts undergo a limited number of cell divisions before entering an irreversible arrest, called senescence. Here we show that human mammary epithelial cells (HMECs) do not conform to this paradigm of senescence. In contrast to fibroblasts, HMECs exhibit an initial growth phase that is followed by a transient growth plateau (termed selection or M0; refs 3-5), from which proliferative cells emerge to undergo further population doublings (approximately 20-70), before entering a second growth plateau (previously termed senescence or M1; refs 4-6). We find that the first growth plateau exhibits characteristics of senescence but is not an insurmountable barrier to further growth. HMECs emerge from senescence, exhibit eroding telomeric sequences and ultimately enter telomere-based crisis to generate the types of chromosomal abnormalities seen in the earliest lesions of breast cancer. Growth past senescent barriers may be a pivotal event in the earliest steps of carcinogenesis, providing many genetic changes that predicate oncogenic evolution. The differences between epithelial cells and fibroblasts provide new insights into the mechanistic basis of neoplastic transformation.  相似文献   

10.
Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest, whereas a second barrier is mediated by oncogene-induced senescence. The relationship between these two barriers, if any, has not been elucidated. Here we show that oncogene-induced senescence is associated with signs of DNA replication stress, including prematurely terminated DNA replication forks and DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression.  相似文献   

11.
The mechanism of replication of the simian virus 40 (SV40) genome closely resembles that of cellular chromosomes, thereby providing an excellent model system for examining the enzymatic requirements for DNA replication. Only one viral gene product, the large tumour antigen (large-T antigen), is required for viral replication, so the majority of replication enzymes must be cellular. Indeed, a number of enzymatic activities associated with replication and the S phase of the cell cycle are induced upon SV40 infection. Cell-free extracts derived from human cells, when supplemented with immunopurified SV40 large-T antigen support efficient replication of plasmids that contain the SV40 origin of DNA replication. Using this system, a cellular protein of relative molecular mass 36,000 (Mr = 36K) that is required for the elongation stage of SV40 DNA replication in vitro has been purified and identified as a known cell-cycle regulated protein, alternatively called the proliferating cell nuclear antigen (PCNA) or cyclin. It was noticed that, in its physical characteristics, PCNA closely resembles a protein that regulates the activity of calf thymus DNA polymerase-delta. Here we show that PCNA and the polymerase-delta auxiliary protein have similar electrophoretic behaviour and are both recognized by anti-PCNA human autoantibodies. More importantly, both proteins are functionally equivalent; they stimulate SV40 DNA replication in vitro and increase the processivity of calf thymus DNA polymerase-delta. These results implicate a novel animal cell DNA polymerase, DNA polymerase-delta, in the elongation stage of replicative DNA synthesis in vitro.  相似文献   

12.
S J Brill  B Stillman 《Nature》1989,342(6245):92-95
Cell-free replication systems for simian virus 40 (SV40) DNA are taken to be a model for the replication of eukaryotic chromosomes, because only one viral protein is required to supplement the replication proteins provided by a human cell extract. To prove that these cellular proteins function in chromosomal DNA replication we have begun to identify homologous proteins in an organism that can be genetically manipulated. Here we report the identification of yeast replication factor-A (yRF-A) from Saccharomyces cerevisiae and show that it is functionally and structurally related to a human protein that is required for the initiation and elongation of SV40 DNA replication. Yeast RF-A, a multi-subunit phosphoprotein, is similar to the human protein in its chromatographic behaviour, subunit structure and DNA-binding activity. The yeast protein will fully substitute for the human protein in an early stage of the initiation of SV40 DNA replication. Substitution of yRF-A in the complete SV40 replication system, however, results in reduced DNA replication, presumably due to a requirement for species-specific interactions between yeast RF-A and the DNA polymerase complex.  相似文献   

13.
Early tumorigenesis is associated with the engagement of the DNA-damage checkpoint response (DDR). Cell proliferation and transformation induced by oncogene activation are restrained by cellular senescence. It is unclear whether DDR activation and oncogene-induced senescence (OIS) are causally linked. Here we show that senescence, triggered by the expression of an activated oncogene (H-RasV12) in normal human cells, is a consequence of the activation of a robust DDR. Experimental inactivation of DDR abrogates OIS and promotes cell transformation. DDR and OIS are established after a hyper-replicative phase occurring immediately after oncogene expression. Senescent cells arrest with partly replicated DNA and with DNA replication origins having fired multiple times. In vivo DNA labelling and molecular DNA combing reveal that oncogene activation leads to augmented numbers of active replicons and to alterations in DNA replication fork progression. We also show that oncogene expression does not trigger a DDR in the absence of DNA replication. Last, we show that oncogene activation is associated with DDR activation in a mouse model in vivo. We propose that OIS results from the enforcement of a DDR triggered by oncogene-induced DNA hyper-replication.  相似文献   

14.
DNA sequences of telomeres maintained in yeast   总被引:95,自引:0,他引:95  
J Shampay  J W Szostak  E H Blackburn 《Nature》1984,310(5973):154-157
Telomeres, the ends of eukaryotic chromosomes, have long been recognized as specialized structures. Their stability compared with broken ends of chromosomes suggested that they have properties which protect them from fusion, degradation or recombination. Furthermore, a linear DNA molecule such as that of a eukaryotic chromosome must have a structure at its ends which allows its complete replication, as no known DNA polymerase can initiate synthesis without a primer. At the ends of the relatively short, multi-copy linear DNA molecules found naturally in the nuclei of several lower eukaryotes, there are simple tandemly repeated sequences with, in the cases analysed, a specific array of single-strand breaks, on both DNA strands, in the distal portion of the block of repeats. In general, however, direct analysis of chromosomal termini presents problems because of their very low abundance in nuclei. To circumvent this problem, we have previously cloned a chromosomal telomere of the yeast Saccharomyces cerevisiae on a linear DNA vector molecule. Here we show that yeast chromosomal telomeres terminate in a DNA sequence consisting of tandem irregular repeats of the general form C1-3A. The same repeat units are added to the ends of Tetrahymena telomeres, in an apparently non-template-directed manner, during their replication on linear plasmids in yeast. Such DNA addition may have a fundamental role in telomere replication.  相似文献   

15.
Telomeres are protein-DNA complexes at the terminals of linear chromosomes, which protect chromosomal integrity and maintain cellular replicative capacity. From single-cell organisms to advanced animals and plants, structures and functions of telomeres are both very conservative. In cells of human and vertebral animals, telomeric DNA base sequences all are (TTAGGG)n. In the present work, we have obtained absorption and fluorescence spectra measured from seven synthesized oligonucleotides to simulate the telomeric DNA system and calculated their relative fluorescence quantum yields on which not only telomeric DNA characteristics are predicted but also possibly the shortened telomeric sequences during cell division are implied. Oligonucleotide 5′-TTAGGGTTAGGG holds a low relative fluorescence quantum yield and remarkable excitation energy innerconversion, which tallies with the telomeric sequence of (TTAGGG)n. This result shows that telomeric DNA has a strong non-radiative or innerconvertible capability.  相似文献   

16.
端粒是染色体DNA端部的特化部分,由高度重复的短序列DNA一蛋白质组成的特殊结构,能维持染色体的稳定和完整.端粒酶是由RNA与蛋白质亚基组成的核糖核蛋白酶,能以自身RNA为模板,合成端粒序列,是一种非常特殊的逆转录酶.端粒的长度和端粒酶的活性与细胞永生化,细胞衰老和癌变密切相关,在肿瘤发生发展中,端粒酶成为一种重要的肿瘤生物学标志物,有望作为诊断和治疗肿瘤的新靶点.本对端粒酶的结构与功能,端粒酶与食管癌、胃癌相关性的研究新进展及端粒酶活性的检测方法做一简要综述.  相似文献   

17.
Recombination occurs during telomere formation in yeast   总被引:47,自引:0,他引:47  
A F Pluta  V A Zakian 《Nature》1989,337(6206):429-433
Short stretches of cloned telomeric sequences are necessary and sufficient for telomere formation in yeast as long as the sequences are present in the same orientation as they are found in vivo. During telomere formation, DNA termini usually undergo RAD52-independent recombination with other DNA termini as would be predicted by models of recombination-mediated telomere replication.  相似文献   

18.
D L Ollis  C Kline  T A Steitz 《Nature》1985,313(6005):818-819
Escherichia coli contains three DNA polymerases that differ in their size, ability to interact with accessory proteins and biological function. Monomeric DNA polymerase I (Pol I) has a relative molecular mass (Mr) of 103,000 (103K) and is involved primarily in the repair of damaged DNA and the processing of Okazaki fragments; polymerase II is of Mr 120K, and polymerase III has a Mr of 140K, is responsible for the replication of the DNA chromosome and is just one of several proteins that are required for replication. DNA polymerases from bacteriophage as well as those of eukaryotic viral and cellular origin also differ with respect to their size and the number of associated proteins that are required for them to function in replication. However, the template-directed copying of DNA is identical in all cases. The crystal structure of the large proteolytic fragment of Pol I shows that it consists of two domains, the larger of which contains a deep crevice whose dimensions are such that it can bind duplex DNA. The T7 polymerase consists of two subunits, the 80K gene 5 protein and the host-encoded 12K thioredoxin of E. coli. We show here that there is an amino acid sequence homology between at least eight polypeptide segments that form the large cleft in the Klenow fragment and polypeptides in T7 DNA polymerase gene 5 protein, suggesting that this domain evolved from a common precursor. The parts of the Pol I and T7 DNA polymerase molecules that bind the DNA substrate appear to share common structural features, and these features may be shared by all of these varied DNA polymerases.  相似文献   

19.
Isolation and characterisation of a yeast chromosomal replicator.   总被引:51,自引:0,他引:51  
D T Stinchcomb  K Struhl  R W Davis 《Nature》1979,282(5734):39-43
A yeast DNA sequence that behaves as a chromosomal replicator, ars1 (autonomously replicating sequence), has been isolated. On transformation, ars1 allows autonomous replication of all co-linear DNA. The replicator can integrate into other replication units and can function in multimeric form. The 850-base pair ars1 element has no detectable homology to other yeast sequences. Such replicator-containing plasmids can be used for the isolation of DNA sequences in yeast cells as well as for the study of chromosomal DNA replication.  相似文献   

20.
Formation of proinsulin by immobilized Bacillus subtilis   总被引:3,自引:0,他引:3  
K Mosbach  S Birnbaum  K Hardy  J Davies  L Bülow 《Nature》1983,302(5908):543-545
There has been an increasing interest in the use of immobilized cells for the production of pharmaceuticals as well as for products such as high fructose syrup or ethanol. Some of these compounds are now produced on an industrial scale whereby the cells are used in a resting or growing state or in a nonviable form as natural carriers of the enzyme(s) involved in the synthesis. The advantages of immobilized cell technology should also apply to microorganisms modified by recombinant DNA techniques to produce a variety of eukaryotic proteins such as hormones. We describe here the properties of immobilized Bacillus subtilis cells carrying plasmids encoding rat proinsulin. Cell proliferation normally coupled to DNA replication is undesirable in immobilized cell systems as "clogging' of the system occurs due to cells growing outside the beads. Therefore, different ways were investigated to inhibit cell division while allowing continued protein synthesis. We found that the addition of certain antibiotics in the growth medium, such as novobiocin which inhibits DNA replication, fulfills these requirements, allowing proinsulin synthesis and excretion to take place over a period of several days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号