共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we investigate the forecast performance of nonlinear error‐correction models with regime switching. In particular, we focus on threshold and Markov switching error‐correction models, where adjustment towards long‐run equilibrium is nonlinear and discontinuous. Our simulation study reveals that the gains from using a correctly specified nonlinear model can be considerable, especially if disequilibrium adjustment is strong and/or the magnitude of parameter changes is relatively large. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
2.
Daumantas Bloznelis 《Journal of forecasting》2018,37(2):151-169
This study establishes a benchmark for short‐term salmon price forecasting. The weekly spot price of Norwegian farmed Atlantic salmon is predicted 1–5 weeks ahead using data from 2007 to 2014. Sixteen alternative forecasting methods are considered, ranging from classical time series models to customized machine learning techniques to salmon futures prices. The best predictions are delivered by k‐nearest neighbors method for 1 week ahead; vector error correction model estimated using elastic net regularization for 2 and 3 weeks ahead; and futures prices for 4 and 5 weeks ahead. While the nominal gains in forecast accuracy over a naïve benchmark are small, the economic value of the forecasts is considerable. Using a simple trading strategy for timing the sales based on price forecasts could increase the net profit of a salmon farmer by around 7%. 相似文献
3.
Nathan Lael Joseph 《Journal of forecasting》2001,20(7):451-484
This study examines the forecasting accuracy of alternative vector autoregressive models each in a seven‐variable system that comprises in turn of daily, weekly and monthly foreign exchange (FX) spot rates. The vector autoregressions (VARs) are in non‐stationary, stationary and error‐correction forms and are estimated using OLS. The imposition of Bayesian priors in the OLS estimations also allowed us to obtain another set of results. We find that there is some tendency for the Bayesian estimation method to generate superior forecast measures relatively to the OLS method. This result holds whether or not the data sets contain outliers. Also, the best forecasts under the non‐stationary specification outperformed those of the stationary and error‐correction specifications, particularly at long forecast horizons, while the best forecasts under the stationary and error‐correction specifications are generally similar. The findings for the OLS forecasts are consistent with recent simulation results. The predictive ability of the VARs is very weak. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
4.
To forecast realized volatility, this paper introduces a multiplicative error model that incorporates heterogeneous components: weekly and monthly realized volatility measures. While the model captures the long‐memory property, estimation simply proceeds using quasi‐maximum likelihood estimation. This paper investigates its forecasting ability using the realized kernels of 34 different assets provided by the Oxford‐Man Institute's Realized Library. The model outperforms benchmark models such as ARFIMA, HAR, Log‐HAR and HEAVY‐RM in within‐sample fitting and out‐of‐sample (1‐, 10‐ and 22‐step) forecasts. It performed best in both pointwise and cumulative comparisons of multi‐step‐ahead forecasts, regardless of loss function (QLIKE or MSE). Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
Jari Hännikäinen 《Journal of forecasting》2018,37(1):102-118
This paper analyzes the relative performance of multi‐step AR forecasting methods in the presence of breaks and data revisions. Our Monte Carlo simulations indicate that the type and timing of the break affect the relative accuracy of the methods. The iterated autoregressive method typically produces more accurate point and density forecasts than the alternative multi‐step AR methods in unstable environments, especially if the parameters are subject to small breaks. This result holds regardless of whether data revisions add news or reduce noise. Empirical analysis of real‐time US output and inflation series shows that the alternative multi‐step methods only episodically improve upon the iterated method. 相似文献
6.
Jae H. Kim 《Journal of forecasting》2004,23(2):141-154
This paper examines small sample properties of alternative bias‐corrected bootstrap prediction regions for the vector autoregressive (VAR) model. Bias‐corrected bootstrap prediction regions are constructed by combining bias‐correction of VAR parameter estimators with the bootstrap procedure. The backward VAR model is used to bootstrap VAR forecasts conditionally on past observations. Bootstrap prediction regions based on asymptotic bias‐correction are compared with those based on bootstrap bias‐correction. Monte Carlo simulation results indicate that bootstrap prediction regions based on asymptotic bias‐correction show better small sample properties than those based on bootstrap bias‐correction for nearly all cases considered. The former provide accurate coverage properties in most cases, while the latter over‐estimate the future uncertainty. Overall, the percentile‐t bootstrap prediction region based on asymptotic bias‐correction is found to provide highly desirable small sample properties, outperforming its alternatives in nearly all cases. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
7.
Kevin Dowd 《Journal of forecasting》2007,26(4):251-270
This paper examines the problem of how to validate multiple‐period density forecasting models. Such models are more difficult to validate than their single‐period equivalents, because consecutive observations are subject to common shocks that undermine i.i.d. The paper examines various solutions to this problem, and proposes a new solution based on the application of standard tests to a resample that is constructed to be i.i.d. It suggests that this solution is superior to alternatives, and presents results indicating that tests based on the i.i.d. resample approach have good power. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
8.
We investigate the forecast performance of the fractionally integrated error correction model against several competing models for the prediction of the Nikkei stock average index. The competing models include the martingale model, the vector autoregressive model and the conventional error correction model. We consider models with and without conditional heteroscedasticity. For forecast horizons of over twenty days, the best forecasting performance is obtained for the model when fractional cointegration is combined with conditional heteroscedasticity. Our results reinforce the notion that cointegration and fractional cointegration are important for long‐horizon prediction. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
9.
This paper investigates potential invariance of mean forecast errors to structural breaks in the data generating process. From the general forecasting literature, such robustness is expected to be a rare occurrence. With the aid of a stylized macro model we are able to identify some economically relevant cases of robustness and to interpret them economically. We give an interpretation in terms of co‐breaking. The analytical results resound well with the forecasting record of a medium‐scale econometric model of the Norwegian economy. 相似文献
10.
S. Sankaran 《Journal of forecasting》1987,6(3):159-166
There are two basic approaches used in the comparative evaluation of forecasters: (1) Statistical tests of significance of differences in error measures, (2) Ordinal rankings of forecasters. To use the first approach of statistical tests, the forecast error data must satisfy the assumptions underlying those tests. This paper examines the validity of those assumptions by enquiring into the small sample properties of the forecast error data of quarterly forecasts of the U.S. economy. 相似文献
11.
Hongtao Li;Xiaoxuan Li;Shaolong Sun;Zhipeng Huang;Xiaoyan Jia; 《Journal of forecasting》2024,43(7):2401-2433
Accurate prior information of passenger flow demand on high-speed railway is of great significance for the operation and the management of transportation systems. Various factors in modern social life have caused uncertainty at demand. Recently, individuals are increasingly depending on the online search results when choosing among different transportation modes, services, and destinations, which provide important basic information for forecasting the travel demand. This study employs Baidu search index to assist in capturing volatility of high-speed railway passenger demands, offering insights into the travel inclinations and travelers' actions. Furthermore, we have given more in-depth attention and analysis to their residual term accounting for the random nature caused by various factors. To this end, a sophisticated deep analysis mechanism based on data decomposition has been devised to extract and analyze the valuable information concealed within the residuals, so as to enhance the comprehension of the variability inherent in the high-speed railway passenger flow. Meanwhile, an error correction strategy is implemented for all residual terms to improve further their forecasting accuracy. Experimental results from two real-world datasets demonstrate the effectiveness and robustness of the developed hybrid approach across several popular evaluation indicators. Therefore, this study can function as a reliable instrument, provide sensible data-driven guidance for resource allocation and make scientific decisions in the railway industry. 相似文献
12.
The analysis and forecasting of electricity consumption and prices has received considerable attention over the past forty years. In the 1950s and 1960s most of these forecasts and analyses were generated by simultaneous equation econometric models. Beginning in the 1970s, there was a shift in the modeling of economic variables from the structural equations approach with strong identifying restrictions towards a joint time-series model with very few restrictions. One such model is the vector auto regression (VAR) model. It was soon discovered that the unrestricted VAR models do not forecast well. The Bayesian vector auto regression (BVAR) approach as well the error correction model (ECM) and models based on the theory of co integration have been offered as alternatives to the simple VAR model. This paper argues that the BVAF., ECM, and co integration models are simply VAR models with various restrictions placed on the coefficients. Based on this notion of a restricted VAR model, a four-step procedure for specifying VAR forecasting models is presented and then applied to monthly data on US electricity consumption and prices. 相似文献
13.
This paper compares the forecast performance of vector‐autoregression‐type (VAR) demand systems with and without imposing the homogeneity restriction in the cointegration space. US meat consumption (beef, poultry and pork) data are studied. One up to four‐steps‐ahead forecasts are generated from both the theoretically restricted and unrestricted models. A modified Diebold–Mariano test of the equality of mean squared forecast errors (MSFE) and a forecast encompassing test are applied in forecast evaluation. Our findings suggest that the imposition of the homogeneity restriction tends to improve the forecast accuracy when the restriction is not rejected. The evidence is mixed when the restriction is rejected. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
14.
Bankruptcy prediction methods based on a semiparametric logit model are proposed for simple random (prospective) and case–control (choice‐based; retrospective) data. The unknown parameters and prediction probabilities in the model are estimated by the local likelihood approach, and the resulting estimators are analyzed through their asymptotic biases and variances. The semiparametric bankruptcy prediction methods using these two types of data are shown to be essentially equivalent. Thus our proposed prediction model can be directly applied to data sampled from the two important designs. One real data example and simulations confirm that our prediction method is more powerful than alternatives, in the sense of yielding smaller out‐of‐sample error rates. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
15.
Y. K. Tse 《Journal of forecasting》1995,14(7):553-563
This paper examines the lead-lag relationship between the spot index and futures price of the Nikkei Stock Average. Using daily data in the post-crash period we investigate the interaction between the spot and futures series through the error correction model. Two versions of error correction models are considered, depending on the postulated long-run equilibrium relationship. It is found that lagged changes in the futures price affect the short-term adjustment in the spot index, but not vice versa. Forecasting models for the spot index are also constructed using the univariate time series approach and the vector autoregressive method. For the post-sample forecast comparison the error correction models produce the best results. The vector autoregressive method performs better than the martingale model, while the univariate time series method gives the poorest forecasts. 相似文献
16.
This paper develops a new diffusion model that incorporates the indirect network externality. The market with indirect network externalities is characterized by two‐way interactive effects between hardware and software products on their demands. Our model incorporates two‐way interactions in forecasting the diffusion of hardware products based on a simple but realistic assumption. The new model is parsimonious, easy to estimate, and does not require more data points than the Bass diffusion model. The new diffusion model was applied to forecast sales of DVD players in the United States and in South Korea, and to the sales of Digital TV sets in Australia. When compared to the Bass and NSRL diffusion models, the new model showed better performance in forecasting long‐term sales. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
17.
Todd E. Clark 《Journal of forecasting》2000,19(1):1-21
This study examines the problem of forecasting an aggregate of cointegrated disaggregates. It first establishes conditions under which forecasts of an aggregate variable obtained from a disaggregate VECM will be equal to those from an aggregate, univariate time series model, and develops a simple procedure for testing those conditions. The paper then uses Monte Carlo simulations to show, for a finite sample, that the proposed test has good size and power properties and that whether a model satisfies the aggregation conditions is closely related to out‐of‐sample forecast performance. The paper then shows that ignoring cointegration and specifying the disaggregate model as a VAR in differences can significantly affect analyses of aggregation, with the VAR‐based test for aggregation possibly leading to faulty inference and the differenced VAR forecasts potentially understating the benefits of disaggregate information. Finally, analysis of an empirical problem confirms the basic results. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
18.
Hui Feng 《Journal of forecasting》2009,28(3):183-193
In this paper we investigate the impact of data revisions on forecasting and model selection procedures. A linear ARMA model and nonlinear SETAR model are considered in this study. Two Canadian macroeconomic time series have been analyzed: the real‐time monetary aggregate M3 (1977–2000) and residential mortgage credit (1975–1998). The forecasting method we use is multi‐step‐ahead non‐adaptive forecasting. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
19.
Based on a vector error correction model we produce conditional euro area inflation forecasts. We use real‐time data on M3 and HICP, and include real GPD, the 3‐month EURIBOR and the 10‐year government bond yield as control variables. Real money growth and the term spread enter the system as stationary linear combinations. Missing and outlying values are substituted by model‐based estimates using all available data information. In general, the conditional inflation forecasts are consistent with the European Central Bank's assessment of liquidity conditions for future inflation prospects. The evaluation of inflation forecasts under different monetary scenarios reveals the importance of keeping track of money growth rate in particular at the end of 2005. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
This paper examines the forecast accuracy of an unrestricted vector autoregressive (VAR) model for GDP, relative to a comparable vector error correction model (VECM) that recognizes that the data are characterized by co‐integration. In addition, an alternative forecast method, intercept correction, is considered for further comparison. Recursive out‐of‐sample forecasts are generated for both models and forecast techniques. The generated forecasts for each model are objectively evaluated by a selection of evaluation measures and equal accuracy tests. The result shows that the VECM consistently outperforms the VAR models. Further, intercept correction enhances the forecast accuracy when applied to the VECM, whereas there is no such indication when applied to the VAR model. For certain forecast horizons there is a significant difference in forecast ability between the intercept corrected VECM compared to the VAR model. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献