首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对表情识别研究对网络的训练要求较高,超参数优化较难,训练效果期望低等问题,提出基于迁移学习的深度学习模型,利用几种较新的模型迁移到表情识别的训练中,即搭建CNN网络和基于迁移学习的ResNet18、ResNet50、MobileNetv2网络,通过大量的训练实验对比四种模型。仿真表明,所提出的模型与常用的模型相比,增强了算法性能,优化了表情网络性能,提高了人脸表情识别率和迁移学习效果。  相似文献   

3.
针对目前人脸表情识别存在准确率不高、模型复杂和计算量大的问题,文章提出了一种基于八度卷积改进的人脸表情识别模型(OCNN):使用改进的八度卷积进行特征提取,提高对细节特征的提取效果,降低特征图的冗余,在不增加参数的同时减少运算量,以提高特征提取性能;利用DyReLU激活函数来增强模型的学习和表达能力;使用自适应平均池化下采样层代替全连接层,以减少参数;将模型在大规模数据集上进行预训练,并在FER2013、FERPlus、RAF-DB数据集上进行模型性能验证实验。实验结果表明:训练后的模型权重为10.4 MB,在人脸表情识别数据集FER2013、FERPlus和RAF-DB上的准确率分别达到73.53%、89.58%和88.50%;与目前诸模型相比,OCNN模型的准确性高且计算资源消耗低,充分证明了该模型的有效性。  相似文献   

4.
针对传统人脸表情识别算法存在的特征提取能力差、 识别率低和误分类率较高等问题, 提出一种基于生成对抗网络(GAN)改进的人脸表情识别算法. 利用生成对抗网络的博弈思想, 分别设计特征提取器、 特征合成器和判别器, 通过判别器与特征提取器之间的对抗训练, 不断增强特征提取器提取特征的能力和分类器对人脸表情识别的准确率, 并将其应用在工作人员工作状态智能监测中, 根据表情识别结果判断工作状态, 从而合理分配实验室资源, 提高实验室资源利用率. 改进算法在CK+数据集上多次实验的结果表明: 该算法有较高的鲁棒性, 能有效提高人脸表情识别率.  相似文献   

5.
由于人类个体面部形态各种各样,使得不同人在表达同一感情时有可能产生较大的视觉差异,为了减弱这种内类视觉差异性对人脸表情识别产生的影响,该文提出一种分层多任务学习的人脸表情识别方法,该方法以现有深度卷积神经网络模型为基础,构造双层树分类器以替换输出层的平面softmax分类器,构建深度多任务学习框架,通过利用人脸表情标签和人脸标签共同学习更具辨识力的深度特征,将知识从相关人脸识别任务中迁移过来,从而减弱面部形态对表情识别的影响,提高表情识别性能。实验结果表明,相较于VGGnet,Googlenet和Resnet深度模型,文中提出的方法均提高了人脸表情识别率,且成功推广到面瘫表情识别问题中。  相似文献   

6.
提出一种多特征与卷积神经网络相结合的人脸表情识别方法。先对人脸表情图像进行预处理,根据人脸面部"三庭五眼"的特征和人脸的几何模型对图像进行裁剪,采用双三次插值法对图像进行缩放。然后提取样本的局部方向模式、二维离散小波变换、Sobel算子三种特征。将这三种特征以三通道图像的形式输入卷积神经网络中进行自适应融合,融合后的特征通过Softmax层进行分类。在CK+数据库的识别率为99.51%,在RAF-DB的识别率为72.1%,识别率都有所提升,验证了所提方法的有效性。  相似文献   

7.
8.
针对使用深度学习提取人脸表情图像特征时易出现冗余特征,提出了一种基于多层感知机(MLP)的改进型Xception人脸表情识别网络.该模型将Xception网络提取的特征输入至多层感知机中进行加权处理,提取出主要特征,滤除冗余特征,从而使得识别准确率得到提升.首先将图像缩放为48*48,然后对数据集进行增强处理,再将这些经过处理的图片送入本文所提网络模型中.消融实验对比表明:本文模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为98.991%、99.02%和80.339%,Xception模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为97.4829%、90.476%和74.0678%,Xception+2lay模型在CK+数据集、JAFFE数据集和MMI数据集上的正确识别率分别为98.04%、84.06%和75.593%.通过以上消融实验对比,本文方法的识别正确率明显优于Xception模型与Xception+2lay模型.与其他模型相比较也验证了本文模型的有效性.  相似文献   

9.
人脸表情识别一直是计算机视觉领域的一个难题.近年来,随着深度学习的飞速发展,一些基于卷积神经网络的方法大大提高了人脸表情识别的准确率,但未能充分利用人脸图像中的信息,这是由于对于面部表情识别有意义的特征主要集中在一些关键位置,例如眼睛、鼻子和嘴巴等区域,因此在特征提取时增加这些关键位置的权重可以改善表情识别的效果.为此...  相似文献   

10.
人脸表情识别就是让计算机按照人类的思维理解表情,是人机交互的重要组成,然而随着深度学习的迅速发展,深度学习技术在人脸表情领域的研究也成为研究热点,所以对深度学习技术在表情识别中的应用及取得的成果进行分析。首先总结了几种常用表情数据集;然后从特征提取和特征分类两方面对基于深度学习的表情识别方法进行了分类,并从网络改进方面分析了基于深度学习的表情识别中的几种网络改进方法;最后阐述了表情识别这一领域中面临的挑战和未来发展。  相似文献   

11.
在人脸表情识别任务中,适用的优化算法可以有效地提高表情识别的效率。针对人脸表情识别任务中的优化算法选择问题,比较研究了SGD、Momentum以及Adagrad、Adadelta、Adam 3种自适应学习率方法在人脸表情识别任务上的表现。特别是为了检验结果的可靠性,采用相同方法在MNIST数据集上进行手写数字识别测试。实验结果显示,在人脸表情识别与其他任务中,自适应学习率方法和动量法性能优于SGD方法,且自适应学习率方法在提高模型准确率上更为突出,Adadelta在表情识别和手写数字识别任务上的准确率达到了96.12%和99%。研究表明,在人脸表情识别任务中,自适应学习率的优化算法具有明显优势。  相似文献   

12.
针对Softmax损失监督下各类样本之间区分度不足的问题,提出了一种孤立中心损失监督方法。基于类间离散度尽量大、类内离散度尽量小的原则,提出方法由3部分组成:采用等角分布固定权值,使得全部类间夹角余弦值之和最小,确保不同类别在角度空间的距离最大化;中心聚类思想,最小化每个样本与其所属类别的中心之间的欧氏距离,促使同类样本尽量聚拢;最大化不同类之间的欧氏距离,使得不同类样本在欧氏空间尽量分开。在表情数据集FER2013、FERPlus和RAF-DB上的测试结果显示:提出方法的平均准确率分别达到了73.02%、88.56%和86.26%,相比于Softmax损失函数,分别提升了1.25%、0.44%和0.65%;同时,提出方法比Softmax损失更加稳定(相同配置下多次实验结果的变化程度更小);提出方法的运行速度只比Softmax损失方法略微慢一点,仍然比一些其他方法快。  相似文献   

13.
针对卷积神经网络特征提取不够充分且识别率低等问题,提出了一种多特征融合卷积神经网络的人脸表情识别方法。首先,为了增加网络的宽度和深度,在网络中引入Inception结构来提取特征的多样性;然后,将提取到的高层次特征与低层次特征进行融合,利用池化层的特征,将融合后的特征送入全连接层,对其特征进行融合处理来增加网络的非线性表达,使网络学习到的特征更加丰富;最后,输出层经过Softmax分类器对表情进行分类,在公开数据集FER2013和CK+上进行实验,并且对实验结果进行分析。实验结果表明:改进后的网络结构在FER2013和CK+数据集的面部表情上,识别率分别提高了0.06%和2.25%。所提方法在人脸表情识别中对卷积神经网络设置和参数配置方面具有参考价值。  相似文献   

14.
首先, 针对人脸表情识别问题提出一种新的多尺度特征选择网络识别方法, 该网络充分结合多尺度网络结构和特征选择结构的优点, 能更有效地提取面部静态图像中的空间信息. 其次, 为验证本文提出的多尺度特征选择网络的识别性能和泛化能力, 在两个经典的人脸表情识别数据集上与一些常用的方法进行对比和交叉验证实验. 实验结果表明, 该网络取得了更好的识别效果, 并且具有良好的泛化能力, 可以灵活地嵌入到人脸表情识别分析系统中.  相似文献   

15.
传统核探测器故障信号诊断研究都需要提前提取信号特征,然后用机器学习、支持向量机、统计方法等对特征进行分类。为了实现对探测器输出信号进行实时识别和故障诊断,本文基于Matlab平台构建了一个用于对图像进行分类的卷积神经网络模型,对核探测器故障信号进行分类诊断。从分类准确率和算法运行时间两个方面对Adam、Sgdm、Rmsprop三种优化算法进行了比较。结果表明Rmsprop算法运行时间最少,但准确度和损失的训练迭代曲线不平稳;Sgdm模型对十组非正常信号图像分类的准确率最高为93.10%,准确度和损失的训练迭代曲线平稳。虽然,本文方法诊断准确率略低于文献报道值,但是不需要对信号进行预处理和特征预提取,使用更为简便。  相似文献   

16.
由于自然场景下的人脸表情存在光照、姿态、种族、性别等因素的影响,人脸表情图像数据集的多样性才是能够保障自然场景下的人脸表情识别的性能高效提升的关键.基于自然场景下的人脸图像数据增强的方法,通过增加人脸表情数据集的多样性,提升在自然场景下人脸表情识别的精确度.对最近人脸表情识别的数据增强方法进行了总结和分析,并对在自然场景下人脸表情识别数据增强的发展趋势进行了展望.  相似文献   

17.
针对人脸年龄识别可用数据集普遍不足的问题,为提升可用数据集不变情况下人脸年龄识别的精度,在深度学习(DL)框架中引入标记分布学习(LDL)策略,命名为DL-LDL,其中卷积神经网络用于自动提取人脸特征,改进的标记分布学习用于学习真实年龄及相邻年龄之间的模糊性和多义性,以丰富年龄信息,提高识别精度.将DL-LDL方法在MORPH和FG-NET这2个公开数据集上进行了试验测试.结果表明:DL-LDL方法提高了年龄识别的精度,与现有最先进的人脸年龄识别方法相比,在MORPH和FG-NET上的平均绝对误差分别降低了8.2%和13.8%.  相似文献   

18.
以人脸表情视频序列为研究对象,介绍了人脸表情识别的一般过程,给出了基于SVM的人脸表情识别方法,讨论了面部表情强度度量方法。通过分析人脸表情的变化,在L-K光流算法基础上应用修正的特征点跟踪方法提取面部特征信息,使用SVM建立人脸表情模型和强度模型,进行表情识别,并对高兴表情进行强度等级分类。实验结果证明了提出方法的有效性。  相似文献   

19.
基于深度学习的循环神经网络方法,面向中文字和词的特点,重新定义了地名标注的输入和输出,提出了汉字级别的循环网络标注模型.以词级别的循环神经网络方法为基准,本文提出的字级别模型在中文地名识别的准确率、召回率和F值均有明显提高,其中F值提高了2.88%.在包含罕见词时提高更为明显,F值提高了26.41%.   相似文献   

20.
人脸口罩穿戴识别技术可以有效监督及管控人们佩戴口罩.本文基于迁移学习理论,共享经典卷积神经网络部分参数,修改其最后几层连接层,使用8 967张图像样本集进行训练,得到了新模型;同时结合了人脸检测技术,针对检测后人脸子图像,采用图像分类方法实现了快速识别.通过迁移学习对深度网络模型开展迁移训练,解决了因为样本量少导致的准确率低等问题,新模型能够有效解决人脸口罩穿戴识别问题,使源领域知识得到了迁移.通过MATLAB编写迁移学习程序和应用仿真主程序,调用了摄像头硬件实现了真实场景应用仿真.实践证明,该研究具有较强的应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号