首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以In(NO3)3和Cd(NO3)2为原料,采用Sol-Gel法合成N型CdIn2O4半导体氧化物纳米材料,通过500~800℃退火处理得到4种温度参数的纳米氧化物材料粉体,按照陶瓷半导体气体传感器工艺制成厚膜气敏元件.利用SEM对材料进行形貌表征,和XRD对材料的晶体结构进行分析,材料粒径尺寸在50 nm左右.测试结果表明,600℃退火烧结的纳米材料性能良好,元件在加热电压为3V时性能稳定,加热功耗约为200 mW;在50×10-6时灵敏度为32倍,响应恢复时间分别为90 s和180 s,最低可检测到1×106.  相似文献   

2.
采用草酸盐共沉淀法成功制备了不同粒径的Co3O4纳米颗粒,用X射线衍射和透射电镜对30砌的样品进行了表征。结果表明,当烧结温度低于430℃时,产物中含有CoO杂相;430℃以上时,产物为纯相C0304纳米颗粒。Co3O4纳米颗粒(30m)为立方尖晶石结构,晶胞参数a=0.80735nm。颗粒形貌基本为球形,颗粒大小分布较均匀。随着烧结温度的增加,颗粒尺寸明显增加。  相似文献   

3.
以尿素为沉淀剂,基于溶剂热法制备出具有特殊三维结构的纳米ZnO,并通过改变Ag的掺杂量制备乙醇气敏材料.利用XRD和SEM对所得产物的晶体结构及微观形貌进行表征, 采用静态配气法对制得的气敏元件进行性能检测.实验结果表明:与纯3D-ZnO相比,掺杂Ag可以有效地改善三维ZnO材料对乙醇气体的气敏性能.且当Ag掺杂质量分数为1.5 % 时,气敏元件对体积分数0.1%乙醇气体的响应值达31.61,工作温度由350℃降至200℃,同时响应/恢复时间缩短至10s/10s且乙醇选择性提高.  相似文献   

4.
SnO2纳米颗粒对CH4气敏特性的研究   总被引:1,自引:0,他引:1  
使用溶胶-凝胶法制备了SnO2纳米颗粒.通过X射线衍射和扫描电子显微镜手段对材料的晶体结构和表面进行分析,结果表明所得材料为纯SnO2纳米颗粒.以所制备的SnO2纳米颗粒为气敏材料制备电阻式气敏元件,在CH4体积分数为2.5×10-4时,测试SnO2纳米颗粒对CH4气体的气敏特性,包括工作温度-气体灵敏度和响应-恢复特性,结果表明SnO2颗粒在工作温度为350℃时对CH4的最大灵敏度为11,响应-恢复时间分别为5s和8s.实验结果表明,该SnO2纳米颗粒气敏传感器对CH4具有快速响应和高灵敏度的特性,在工矿安全运行和环境保护方面具有重要的应用价值.  相似文献   

5.
利用以SnCl4为原料的化学共沉淀法、溶胶-凝胶法和以金属Sn粒为原料的溶解-热解法分别制备出纳米SnO2粉体,研究了不同方法制备材料对CO的气敏性能。采用XRD、TEM等手段对其进行表征,静态配气法测试SnO2的酒敏性能。结果表明,采用溶解一热解法制备的SnO2粒径小于10nm,在180℃的工作温度下对0.1%的CO具有4.5倍的高灵敏度。  相似文献   

6.
运用共沉淀法制备出纳米ZnSnO3粉末,X射线衍射仪(XRD)分析为纯的ZnSnO3相,透射电镜(TEM)分析表明粒度达到纳米级.利用传统的旁热厚膜制备工艺制备了纯ZnSnO3及其掺杂贵金属的气敏传感器,测试了气敏性能.通过对气体吸附机理和扫描电子显微镜(SEM)对敏感层的分析解释气敏性能提高的原因.结果表明: Ag+、Pd2+的掺杂可提高器件对C2H5OH的灵敏度,对H2敏感度的提高达到15倍以上.掺杂阻碍了基体晶粒的长大,使其表面不规则且有较多气孔,这是气敏性能提高的主要原因.  相似文献   

7.
采用催化-凝胶法制备的平均粒径60nm的纳米钨粉为原料,经钢模压制成生坯,用高温膨胀仪测定了纳米钨粉坯体的烧结收缩动力学曲线;然后分别测定了不同烧结温度和烧结时间下烧结体晶粒尺寸和相对密度的变化.结果表明,纳米钨粉的坯体在200℃开始收缩,1300℃基本停止收缩.从1000℃到1200℃,其相对密度提高了24%,是致密化过程最快的阶段.在1200℃×120min的烧结工艺下得到烧结体相对密度为95%,晶粒尺寸为5μm的钨材.  相似文献   

8.
为了改善ZrO2陶瓷材料的综合力学性能,探讨了添加不同粒径和含量的Al2O3粉末对ZrO2-TiB2-Al2O3纳米复合陶瓷材料微观结构和力学性能的影响.采用真空热压烧结工艺制备了ZrO2纳米复合陶瓷材料,烧结温度为1 450℃,热压压力为30MPa,保温1h.结果表明:微米Al2O3粉末的体积分数为10%时,ZrO2-TiB2-Al2O3纳米复合陶瓷材料的抗弯强度最高,可达743MPa;添加纳米Al2O3粉末对材料的韧性提高明显,最高可达11.37MPa.m1/2,但不同粒径的Al2O3粉末对材料的硬度影响则不明显,材料的硬度随Al2O3含量的增加而增加.  相似文献   

9.
摘要:以聚乙二醇(PEG)为分散剂,采用溶胶-凝胶技术结合冷冻干燥法制备了纳米生物玻璃(NBG).研究了PEG分子量和用量对纳米生物玻璃粒径和形貌的影响.采用热重-差热分析确定了纳米生物玻璃的烧结温度,并利用FTIR,TEM和XRD对其进行了表征.热重-差热分析结果表明:NBG的烧结温度为650 ℃,烧结后得到的生物玻璃为非晶态的.采用PEG-200制备的NBG为微米级颗粒,PEG-10 000制备的NBG粒径为50~80 nm,形状为空心球状;PEG-20 000制备的NBG,其形状为长条形的纳米棒(10×100 nm).随着PEG浓度的增加,其粒径愈小.  相似文献   

10.
氧化钛纳米陶瓷的制备及其结构与力学性能   总被引:1,自引:0,他引:1  
为探讨在无压烧结过程中TiO2纳米陶瓷的致密化与晶粒长大的关系以及纳米陶瓷的结构对其力学性能的影响,采用溶胶一凝胶技术制备的不同颗粒粒径的TiO2纳米粉体经冷压成型后无压烧结TiO2纳米陶瓷.研究结果表明:利用相变辅助无压烧结方法在800℃烧结获得了晶粒粒径小于60 nm、相对密度超过95%的TiO2纳米块体陶瓷:当800℃以下烧结时,TiO2纳米陶瓷的相对密度随烧结温度的升高而快速增大,而TiO2纳米陶瓷的平均晶粒粒径随烧结温度升高则缓慢长大;当大于800℃的温度烧结时,TiO2纳米陶瓷的致密化加快,但陶瓷的晶粒粒径则快速长大.TiO2纳米陶瓷的显微硬度主要取决于TiO2纳米陶瓷的相对密度和平均晶粒粒径,即纳米氧化钛陶瓷的相对密度越大,晶粒粒径越小,则显微硬度越大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号