首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Much effort has been devoted recently to expanding the amino acid repertoire in protein biosynthesis in vivo. From such experimental work it has emerged that some of the non-canonical amino acids are accepted by the cellular translational machinery while others are not, i.e. we have learned that some determinants must exist and that they can even be anticipated. Here, we propose a conceptual framework by which it should be possible to assess deeper levels of the structure of the genetic code, and based on this experiment to understand its evolution and establishment. First, we propose a standardised repertoire of 20 amino acids as a basic set of conserved building blocks in protein biosynthesis in living cells to be the main criteria for genetic code structure and evolutionary considerations. Second, based on such argumentation, we postulate the structure and evolution of the genetic code in the form of three general statements: (i) the nature of the genetic code is deterministic; (ii) the genetic code is conserved and universal; (iii) the genetic code is the oldest known level of complexity in the evolution of living organisms that is accessible to our direct observation and experimental manipulations. Such statements are discussed as our working hypotheses that are experimentally tested by recent findings in the field of expanded amino acid repertoire in vivo. Received 30 June 1999; accepted 9 July 1999  相似文献   

2.
3.
Many methods have been developed to analyse protein sequences and structures, although less work has been undertaken describing and comparing protein surfaces. Evolution can lead sequences to diverge or structures to change topology; nevertheless, surface determinants that are essential to protein function itself may be mantained. Moreover, different molecules could converge to similar functions by gaining specific surface determinants. In such cases, sequence or structure comparisons are likely to be inadequate in describing or identifying protein functions and evolutionary relationships among proteins. Surface analysis can identify function determinants that are independent of sequence or secondary structure and can therefore be a powerful tool to highlight cases of possible convergent or divergent evolution. This kind of approach can be useful for a better understanding of protein molecular and biochemical mechanisms of catalysis or interaction with a ligand, which are usually surface dependent. Protein surface comparison, when compared to sequence or structure comparison methods, is a hard computational challenge and evaluated methods allowing the comparison of protein surfaces are difficult to find. In this review, we will survey the current knowledge about protein surface similarity and the techniques to detect it.  相似文献   

4.
Structural symmetry is observed in the majority of fundamental protein folds and gene duplication and fusion evolutionary processes are postulated to be responsible. However, convergent evolution leading to structural symmetry has also been proposed; additionally, there is debate regarding the extent to which exact primary structure symmetry is compatible with efficient protein folding. Issues of symmetry in protein evolution directly impact strategies for de novo protein design as symmetry can substantially simplify the design process. Additionally, when considering gene duplication and fusion in protein evolution, there are two competing models: “emergent architecture” and “conserved architecture”. Recent experimental work has shed light on both the evolutionary process leading to symmetric protein folds as well as the ability of symmetric primary structure to efficiently fold. Such studies largely support a “conserved architecture” evolutionary model, suggesting that complex protein architecture was an early evolutionary achievement involving oligomerization of smaller polypeptides.  相似文献   

5.
The neuroepithelial stem cell protein, or Nestin, is a cytoskeletal intermediate filament initially characterized in neural stem cells. However, current extensive evidence obtained in in vivo models and humans shows presence of Nestin+ cells with progenitor and/or regulatory functions in a number of additional tissues, remarkably bone marrow. This review presents the current knowledge on the role of Nestin in essential stem cell functions, including self-renewal/proliferation, differentiation and migration, in the context of the cytoskeleton. We further discuss the available in vivo models for the study of Nestin+ cells and their progeny, their function and elusive nature in nervous system and bone marrow, and their potential mechanistic role and promising therapeutic value in preclinical models of disease. Future improved in vivo models and detection methods will allow to determine the true essence of Nestin+ cells and confirm their potential application as therapeutic target in a range of diseases.  相似文献   

6.
Proteins are composed of domains, which are conserved evolutionary units that often also correspond to functional units and can frequently be detected with reasonable reliability using computational methods. Most proteins consist of two or more domains, giving rise to a variety of combinations of domains. Another level of complexity arises because proteins themselves can form complexes with small molecules, nucleic acids and other proteins. The networks of both domain combinations and protein interactions can be conceptualised as graphs, and these graphs can be analysed conveniently by computational methods. In this review we summarise facts and hypotheses about the evolution of domains in multi-domain proteins and protein complexes, and the tools and data resources available to study them.Received 20 September 2004; received after revision 23 October 2004; accepted 1 November 2004  相似文献   

7.
8.
A better definition of the structural and thermodynamic determinants of the interaction of nucleic acids with proteins is shedding light on the origin of the genetic code, protein synthesis, and nucleic acid replication. This is also allowing to show a consistent biochemical framework for the appearance of these fundamental synthetic mechanisms. This article reviews recent significant developments in the field, and discusses an integrated model for a biochemically plausible evolution of these fundamental mechanisms of synthesis. This model is based on sequence-specific interactions between abiotically synthesized polynucleotides and polypeptides, and can account for a coordinate evolution of the genetic code, protein synthesis, and nucleic acid replication in living cells.  相似文献   

9.
Circular proteoglycans from sponges: first members of the spongican family   总被引:3,自引:0,他引:3  
Species-specific cell adhesion in marine sponges is mediated by a new family of modular proteoglycans whose general supramolecular structure resembles that of hyalectans. However, neither their protein nor their glycan moieties have significant sequence homology to other proteoglycans, despite having protein subunits equivalent to link proteins and to proteoglycan monomer core proteins, and glycan subunits equivalent to hyaluronan and to the glycosaminoglycans of hyalectans. In some species, these molecular components are assembled into a structure with a circular core formed by the link protein- and hyaluronan-like subunits. Besides their involvement in cell adhesion, these sponge proteoglycans, for which we propose the term spongicans, participate in signal transduction processes and are suspected to play a role in sponge self-nonself recognition. Their in vivo roles and the mild methods used to purify large amounts of functionally active spongicans make them ideal models to study the functions and possible new applications of proteoglycans in biomedical research. Received 21 May 2002; received after revision 5 July 2002; accepted 10 July 2002 RID="*" ID="*"Corresponding author.  相似文献   

10.
Both in vivo and in vitro models have certain disadvantages for the study of the chronic hepatotoxicity of drugs. The aim of this work was to evaluate a new approach based on an in vivo/in vitro model. After chronic in vivo treatment of rats with Vincamine and Vindeburnol (an eburnamenine derivative which exhibits hepatotoxic properties in man) liver cells were isolated, and functional and metabolic disorders (metabolic utilization of fructose and protein biosynthesis) were studied to determine injury. The results showed no modification of blood parameters, but a direct relationship between the dose of Vindeburnol administered in vivo and the metabolic disorders observed in vitro, evidencing the high sensitivity and reliability of this model.  相似文献   

11.
Both in vivo and in vitro models have certain disadvantages for the study of the chronic hepatotoxicity of drugs. The aim of this work was to evaluate a new approach based on an in vivo/in vitro model. After chronic in vivo treatment of rats with Vincamine and Vindeburnol (an eburnamenine derivative which exhibits hepatotoxic properties in man) liver cells were isolated, and functional and metabolic disorders (metabolic utilization of fructose and protein biosynthesis) were studied to determine injury. The results showed no modification of blood parameters, but a direct relationship between the dose of Vindeburnol administered in vivo and the metabolic disorders observed in vitro, evidencing the high sensitivity and reliability of this model.  相似文献   

12.
Polynucleotide polymerases play a crucial role in transmitting genetic information from generation to generation, and they are the most important reagents in biotechnology. Although classical crystal structure analyses as well as biochemical studies have significantly contributed to our understanding of how DNA polymerases function, surprising new insights regarding the importance of certain residues and protein motifs, or of their mutability have been achieved in recent years by evolutionary approaches. Directed evolution has also facilitated the generation of polymerases with tailored substrate repertoires or with stabilities and activities beyond those of their naturally evolved counterparts. Recent new insights in polymerase structure-function relationships and new achievements in the development of tailored polymerases for current methods of nucleic acid synthesis will be summarized in this article. Received 22 April 2005; received after revision 20 July 2005; accepted 27 July 2005  相似文献   

13.
Molecular oxygen (O2) is a key player in cell mitochondrial function, redox balance and oxidative stress, normal tissue function and many common disease states. Various chemical, physical and biological methods have been proposed for measurement, real-time monitoring and imaging of O2 concentration, state of decreased O2 (hypoxia) and related parameters in cells and tissue. Here, we review the established and emerging optical microscopy techniques allowing to visualize O2 levels in cells and tissue samples, mostly under in vitro and ex vivo, but also under in vivo settings. Particular examples include fluorescent hypoxia stains, fluorescent protein reporter systems, phosphorescent probes and nanosensors of different types. These techniques allow high-resolution mapping of O2 gradients in live or post-mortem tissue, in 2D or 3D, qualitatively or quantitatively. They enable control and monitoring of oxygenation conditions and their correlation with other biomarkers of cell and tissue function. Comparison of these techniques and corresponding imaging setups, their analytical capabilities and typical applications are given.  相似文献   

14.
15.
Combinatorial protein engineering for selection of proteins with novel functions, such as enzymes and affinity reagents, is an important tool in biotechnology, drug discovery, and other biochemical fields. Bacterial display is an emerging technology for isolation of new affinity proteins from such combinatorial libraries. Cells have certain properties that are attractive for directed evolution purposes, in particular the option to use quantitative flow-cytometric cell sorting for selection of binders. Here, an immune library of around 107 camelid single-domain antibody fragments (Nanobodies) was displayed on both the Gram-positive bacterium Staphylococcus carnosus and on phage. As demonstrated for the first time, the antibody repertoire was found to be well expressed on the bacterial surface and flow-cytometric sorting yielded a number of Nanobodies with subnanomolar affinity for the target protein, green fluorescent protein (GFP). Interestingly, the staphylococcal output repertoire and the binders from the phage display selection contained two slightly different sets of clones, containing both unique as well as several similar variants. All of the Nanobodies from the staphylococcal selection were also shown to enhance the fluorescence of GFP upon binding, potentially due to the fluorescence-based sorting principle. Our study highlights the impact of the chosen display technology on the variety of selected binders and thus the value of having alternative methods available, and demonstrates in addition that the staphylococcal system is suitable for generation of high-affinity antibody fragments.  相似文献   

16.
Inteins catalyze a post-translational modification known as protein splicing, where the intein removes itself from a precursor protein and concomitantly ligates the flanking protein sequences with a peptide bond. Over the past two decades, inteins have risen from a peculiarity to a rich source of applications in biotechnology, biomedicine, and protein chemistry. In this review, we focus on developments of intein-related research spanning the last 5 years, including the three different splicing mechanisms and their molecular underpinnings, the directed evolution of inteins towards improved splicing in exogenous protein contexts, as well as novel applications of inteins for cell biology and protein engineering, which were made possible by a clearer understanding of the protein splicing mechanism.  相似文献   

17.
嗜热蛋白是一类主要来源于嗜热微生物的热稳定蛋白,能够在高温下长时间保持活性而不变性.通过对嗜热蛋白耐热机理的深入研究,对于人们深入理解蛋白质的折叠、结构与功能、进化以及在蛋白质加工中对蛋白质分子的定向设计和改造有着重要的意义。本文主要介绍了目前对嗜热蛋白的研究概况和主要进展。  相似文献   

18.
Green fluorescent protein (GFP) is a powerful tool for studying gene expression, protein localization, protein–protein interactions, calcium concentrations, and redox potentials owing to its intrinsic fluorescence. However, GFP not only contains a chromophore but is also tightly folded in a temperature-dependent manner. The latter property of GFP has recently been exploited (1) to characterize the translocase of the outer mitochondrial membrane and (2) to discriminate between protein transport across and into biomembranes in vivo. I therefore suggest that GFP could be a valuable tool for the general analysis of protein transport machineries and pathways in a variety of organisms. Moreover, results from such studies could be important for the interpretation and optimization of classical experiments using GFP tagging.  相似文献   

19.
We demonstrate for the first time a hair cycle-dependent gene and protein expression of proopiomelanocortin in mouse skin in vivo. Northern blot detected POMC mRNA with an apparent size of 0.9 kb in anagen but not telogen skin. Western blot emphasized a specific protein of 30-33 kDa recognized by anti beta-endorphin in late but not early anagen or telogen skin. By immunocytochemistry, beta-endorphin antigen was localized in the sebaceous gland in a hair cycle dependent manner.  相似文献   

20.
A substantial proportion of Chinese nationals seem to accept evolution, and the country is sometimes held up to show that the sorry state of evolution acceptance in the United States is not inevitable. Attempts to improve evolution acceptance generally focus on improving communication, curricular reform, and even identifying cognitive mechanisms that bias people against evolution. What is it that the Chinese scientific community did so well, and can it be generalized? This paper argues that evolution acceptance in China has a very specific history, one that other countries are very unlikely to emulate. We show that the interactions among science, education, mass media, social and political movements, and ideological arguments about evolution greatly influenced the Chinese public's understanding and acceptance of evolution. We find that it was not just formal education, but many more ideologically motivated methods of evolution exposure that contributed to the high rate of acceptance. But since the purpose of evolution dissemination has moved beyond merely teaching biology, the Chinese public persists with substantial misunderstandings of the theory. Thus, bottom line percentage of acceptance figures can be misleading; the details and the history really matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号