首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
This study compares X-12-ARIMA and MING, two new seasonal adjustment methods designed to handle outliers and structural changes in a time series. X-12-ARIMA is a successor to the X-11-ARIMA seasonal adjustment method, and is being developed at the US Bureau of the Census. MING is a ‘Mixture based Non-Gaussian’ method for seasonal adjustment using time series structural models and is implemented as a function in the S-Plus language. The procedures are compared using 29 macroeconomic time series from the US Bureau of the Census. These series have both outliers and structural changes, providing a good testbed for comparing non-Gaussian methods. For the 29 series, the X-12-ARIMA decomposition consistently leads to smoother seasonal factors which are as or more ‘flexible’ than the MING seasonal component. On the other hand, MING is more stable, particularly in the way it handles outliers and level shifts. This study relies heavily on graphical tools for comparing seasonal adjustment methods.  相似文献   

2.
This paper reviews the relations between the methods of seasonal adjustment used by official statistical agencies and the ‘model-based’ methods that postulate explicit stochastic models for the unobserved components of a time series and apply optimal signal extraction theory to obtain a seasonally adjusted series. The Kalman filter implementation of the model-based methods is described and some recent results on its properties are reviewed. The model-based methods employ homogeneous or time-invariant models that assume in particular that the autocovariance structure does not vary with the season. Relaxing this leads to the class of models known as periodic models, and an example of a seasonally heterosceclastic unobserved-components ARIMA (SHUCARIMA) model is presented. The calculation of the standard error of a seasonally adjusted series via the Kalman filter is extended to this periodic model and illustrated for a monthly rainfall series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号