首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A cDNA clone from the Duchenne/Becker muscular dystrophy gene   总被引:8,自引:0,他引:8  
A H Burghes  C Logan  X Hu  B Belfall  R G Worton  P N Ray 《Nature》1987,328(6129):434-437
  相似文献   

3.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder which affects approximately 1 in 3,300 males, making it the most common of the neuromuscular dystrophies. The biochemical basis of the disease is unknown and as yet no effective treatment is available. A small number of females are also affected with the disease, and these have been found to carry X; autosome translocations involving variable autosomal sites but always with a breakpoint within band Xp21 of the X chromosome (implicated by other kinds of genetic evidence as the site of the DMD lesion). In these female patients the normal X chromosome is preferentially inactivated, which it is assumed silences their one normal DMD gene, leading to expression of the disease. In one such affected female the autosomal breakpoint lies in the middle of the short arm of chromosome 21, within a cluster of ribosomal RNA genes. Here we have used rRNA sequences as probes to clone the region spanning the translocation breakpoint. A sequence derived from the X-chromosomal portion of the clone detects a restriction fragment length polymorphism (RFLP) which is closely linked to the DMD gene and uncovers chromosomal deletions in some male DMD patients.  相似文献   

4.
The Duchenne muscular dystrophy (DMD) locus has been localized to the short arm of the human X chromosome (Xp21) by detection of structural abnormalities and by genetic linkage studies. A library highly enriched for human DNA from Xp21 was constructed using DNA isolated from a male patient who had a visible deletion and three X-linked disorders (DMD, retinitis pigmentosa and chronic granulomatous disease). Seven cloned DNA probes from this library and the probe 754 (refs 5, 8) are used in the present study to screen for deletions in the DNA isolated from 57 unrelated males with DMD. Five of these DMD males are shown to exhibit deletions for one of the cloned DNA segments and at least 38 kb of surrounding DNA. In addition, two subclones from the same region detect four restriction fragment length polymorphisms which exhibit no obligate recombination with DMD in 34 meiotic events. These new DNA segments will complement the existing Xp21 probes for use in carrier detection and prenatal diagnosis of DMD. Elucidation of the end points of the five deletions will help delineate the extent of the DMD locus and ultimately lead to an understanding of the specific sequences involved in DMD.  相似文献   

5.
6.
Duchenne muscular dystrophy (DMD) is an X-linked disorder affecting about 1 in 3,500 males. It is allelic with the milder Becker muscular dystrophy. The biochemical basis for both diseases is unknown and no effective treatment is available. Long-range physical mapping has shown that the DMD gene, localized in Xp21, is extremely large, exceeding 2 million base pairs. Until now, carrier detection and prenatal diagnosis has involved the use of linked restriction fragment length polymorphism markers which detect muscular dystrophy-associated deletions in about 10% of the cases. Field inversion gel electrophoresis (FIGE) allows the detection of structural rearrangements in 21 out of 39 of the DMD patients studied (54%), of which 14 (65%) were not detected by conventional methods. Large deletions seem to make up a much higher fraction of the DMD mutations than so far indicated by other methods. A region prone to deletion was located in the distal half of the gene. FIGE analysis could provide a valuable extension of information for carrier detection and prenatal diagnosis. The technique should be generally applicable to the study of diseases involving structural chromosomal rearrangements.  相似文献   

7.
Germline mosaicism and Duchenne muscular dystrophy mutations   总被引:12,自引:0,他引:12  
Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular disease with an incidence of approximately 1 in 3,500 newborn boys. The DMD locus has a high mutation frequency: one third of the cases is thought to result from a new mutation. Linkage studies using probes to detect restriction fragment length polymorphisms and DNA deletion studies have greatly improved DMD carrier detection and prenatal diagnosis. Here we report on two families in which a pERT87 (DXS164) deletion was transmitted to more than one offspring by women who showed no evidence for the mutation in their own somatic (white blood) cells. We also show that the deletion in both siblings in one of the families is identical, indicating that the deletion must have occurred during mitosis in early germline proliferation, leading to a germline mosaicism. This phenomenon may turn out to be a major factor contributing to the induction of DMD mutations, and has important implications for the counselling of DMD families.  相似文献   

8.
R D Nicholls  J H Knoll  M G Butler  S Karam  M Lalande 《Nature》1989,342(6247):281-285
Prader-Willi syndrome (PWS) is the most common form of dysmorphic genetic obesity associated with mental retardation. About 60% of cases have a cytological deletion of chromosome 15q11q13 (refs 2, 3). These deletions occur de novo exclusively on the paternal chromosome. By contrast, Angelman syndrome (AS) is a very different clinical disorder and is also associated with deletions of region 15q11q13 (refs 6-8), indistinguishable from those in PWS except that they occur de novo on the maternal chromosome. The parental origin of the affected chromosomes 15 in these disorders could, therefore, be a contributory factor in determining their clinical phenotypes. We have now used cloned DNA markers specific for the 15q11q13 subregion to determine the parental origin of chromosome 15 in PWS individuals not having cytogenetic deletions; these individuals account for almost all of the remaining 40% of PWS cases. Probands in two families displayed maternal uniparental disomy for chromosome 15q11q13. This is the first demonstration that maternal heterodisomy--the presence of two different chromosome 15s derived from the mother--can be associated with a human genetic disease. The absence of a paternal contribution of genes in region 15q11q13, as found in PWS deletion cases, rather than a mutation in a specific gene(s) in this region may result in expression of the clinical phenotype. Thus, we conclude that a gene or genes in region 15q11q13 must be inherited from each parent for normal human development.  相似文献   

9.
10.
Long-range restriction map around the Duchenne muscular dystrophy gene   总被引:14,自引:0,他引:14  
M Burmeister  H Lehrach 《Nature》1986,324(6097):582-585
Duchenne muscular dystrophy is an X-linked recessive disease affecting about 1 in 4,000 newborn boys. As in many other inherited diseases, the biochemical basis of the condition is unknown, and as yet there is no effective treatment. Translocations, deletions and other mutations leading to the DMD phenotype are distributed over a chromosomal area of large, but unknown size. Using pulsed-field gradient gel electrophoresis, we have now determined restriction maps of a major fraction of this area, covering two regions of three million basepairs in total, and used it to determine the position of several probes linked to DMD. The maps establish physical distances between structural changes associated with the DMD phenotype and provide evidence for a CpG-rich island proximal to the area containing translocations and deletions associated with the DMD phenotype.  相似文献   

11.
Duchenne muscular dystrophy (DMD) and its milder form, Becker muscular dystrophy (BMD), are allelic X-linked muscle disorders in man. The gene responsible for the disease has been cloned from knowledge of its map location at band Xp21 on the short arm of the X chromosome. The product of the DMD gene, a protein of relative molecular mass 400,000 (Mr 400K) recently named dystrophin, has been reported to co-purify with triads of mouse and rabbit skeletal muscle when assayed using polyclonal antibodies raised against fusion proteins encoded by regions of mouse DMD complementary DNA. Here we show that antibodies directed against synthetic peptides and fusion proteins derived from the N-terminal region of human DMD cDNA strongly react with an antigen present in skeletal muscle sarcolemma on cryostat sections of normal human muscle biopsies. This immunoreactivity is reduced or absent in muscle fibres from DMD patients but appears normal in muscle fibres from patients with other myopathic diseases. The same antibodies specifically react with a 400K protein in sodium dodecyl sulphate (SDS) extracts of normal human muscle subjected to Western blot analysis. We conclude that the product of the DMD gene is associated with the sarcolemma rather than with the triads and speculate that it strengthens the sarcolemma by anchoring elements of the internal cytoskeleton to the surface membrane.  相似文献   

12.
Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer   总被引:15,自引:0,他引:15  
S L Naylor  B E Johnson  J D Minna  A Y Sakaguchi 《Nature》1987,329(6138):451-454
Specific chromosomal deletions sometimes associated with tumours such as retinoblastoma (chromosome 13q14) and Wilm's tumour (chromosome 11p13) have led to the hypothesis that recessive genes may be involved in tumorigenesis. This hypothesis is supported by demonstration of allele loss specific for these regions using polymorphic DNA markers and by the isolation of a complementary DNA clone for the retinoblastoma gene. A cytogenetic deletion in chromosome 3 (p14-p23) was reported in small-cell lung cancer (SCLC) by Whang-Peng et al. At least one homologue of chromosome 3 was affected in the majority of SCLC tumours; however, the multiple chromosomal changes seen presented the possibility that chromosome 3 was rearranged, not deleted. We used polymorphic DNA probes for chromosome 3p and compared tumour and constitutional genotypes of nine SCLC patients. Our data show loss of alleles of chromosome 3p markers in tumour DNA of all nine patients supporting the hypothesis that this region contributes to tumorigenesis in SCLC.  相似文献   

13.
B T Darras  U Francke 《Nature》1987,329(6139):556-558
  相似文献   

14.
One in 10,000 children develops Wilms' tumour, an embryonal malignancy of the kidney. Although most Wilms' tumours are sporadic, a genetic predisposition is associated with aniridia, genito-urinary malformations and mental retardation (the WAGR syndrome). Patients with this syndrome typically exhibit constitutional deletions involving band p13 of one chromosome 11 homologue. It is likely that these deletions overlap a cluster of separate but closely linked genes that control the development of the kidney, iris and urogenital tract (the WAGR complex). A discrete aniridia locus, in particular, has been defined within this chromosomal segment by a reciprocal translocation, transmitted through three generations, which interrupts 11p13. In addition, the specific loss of chromosome 11p alleles in sporadic Wilms' tumours has been demonstrated, suggesting that the WAGR complex includes a recessive oncogene, analogous to the retinoblastoma locus on chromosome 13. In WAGR patients, the inherited 11p deletion is thought to represent the first of two events required for the initiation of a Wilms' tumour, as suggested by Knudson from epidemiological data. We have now isolated the deleted chromosomes 11 from four WAGR patients in hamster-human somatic cell hybrids, and have tested genomic DNA from the hybrids with chromosome 11-specific probes. We show that 4 of 31 markers are deleted in at least one patient, but that of these markers, only the gene encoding the beta-subunit of follicle-stimulating hormone (FSHB) is deleted in all four patients. Our results demonstrate close physical linkage between FSHB and the WAGR locus, suggest a gene order for the four deleted markers and exclude other markers tested from this region. In hybrids prepared from a balanced translocation carrier with familial aniridia, the four markers segregate into proximal and distal groups. The translocation breakpoint, which identifies the position of the aniridia gene on 11p, is immediately proximal to FSHB, in the interval between FSHB and the catalase gene.  相似文献   

15.
Mutations in the p53 gene occur in diverse human tumour types   总被引:196,自引:0,他引:196  
The p53 gene has been a constant source of fascination since its discovery nearly a decade ago. Originally considered to be an oncogene, several convergent lines of research have indicated that the wild-type gene product actually functions as a tumour suppressor gene. For example, expression of the neoplastic phenotype is inhibited, rather than promoted, when rat cells are transfected with the murine wild-type p53 gene together with mutant p53 genes and/or other oncogenes. Moreover, in human tumours, the short arm of chromosome 17 is often deleted. In colorectal cancers, the smallest common region of deletion is centred at 17p13.1; this region harbours the p53 gene, and in two tumours examined in detail, the remaining (non-deleted) p53 alleles were found to contain mutations. This result was provocative because allelic deletion coupled with mutation of the remaining allele is a theoretical hallmark of tumour-suppressor genes. In the present report, we have attempted to determine the generality of this observation; that is, whether tumours with allelic deletions of chromosome 17p contain mutant p53 genes in the allele that is retained. Our results suggest that (1) most tumours with such allelic deletions contain p53 point mutations resulting in amino-acid substitutions, (2) such mutations are not confined to tumours with allelic deletion, but also occur in at least some tumours that have retained both parental 17p alleles, and (3) p53 gene mutations are clustered in four 'hot-spots' which exactly coincide with the four most highly conserved regions of the gene. These results suggest that p53 mutations play a role in the development of many common human malignancies.  相似文献   

16.
Duchenne muscular dystrophy gene product is not identical in muscle and brain   总被引:30,自引:0,他引:30  
U Nudel  D Zuk  P Einat  E Zeelon  Z Levy  S Neuman  D Yaffe 《Nature》1989,337(6202):76-78
  相似文献   

17.
N A Costlow  J A Simon  J T Lis 《Nature》1985,313(5998):147-149
Nuclease-hypersensitive sites in chromatin exist at the 5' side of many eukaryotic genes. To gain some understanding of the molecular basis of these hypersensitive sites, we have now examined the pair of sites upstream of the Drosophila hsp70 gene in a series of plasmids that contain deletions in the hypersensitive region and have been transformed into yeast cells. Hypersensitive sites 5' to a Drosophila hsp70 gene are preserved when this gene is introduced into yeast by transformation. We find that a yeast strain containing a plasmid in which the deletion extends through the first hypersensitive site still displays the normal pair of hypersensitive sites, so DNA sequences over which the first hypersensitive site is centred are not required for hypersensitivity at this position and the site can form over a foreign DNA sequence juxtaposed against this deletion end point. Deletions progressing further into the region bracketed by the pair of 5' hypersensitive sites eliminate the first hypersensitive site and alter the downstream site. We propose that the hypersensitive sites are generated through the binding of a protein that renders flanking sequences more accessible to nucleases, perhaps by preventing normal chromatin packaging.  相似文献   

18.
19.
E F Fritsch  R M Lawn  T Maniatis 《Nature》1979,279(5714):598-603
Deletions in the DNA of individuals with hereditary persistence of fetal haemoglobin (HPFH) and 8 beta-thalassaemia have been mapped as a means of identifying regulatory sequences involved in the switch from fetal to adult globin gene expression. The end points of these deletions have been precisely located with respect to restriction endonuclease cleavage sites within and surrounding the gamma-, delta- and beta-globin genes in normal human DNA and the deletion maps were used to obtain definitive evidence for the physical linkage of the fetal and adult beta-like globin genes in the order 5'Ggamma-Agamma-delta-beta 3'. Correlation of haematological data and the location of deletions in two cases of HPFH and one case of deltabeta-thalassaemia suggest that a region of DNA located near the 5'-end of the delta-globin gene may be involved in the suppression in cis of gamma-globin gene expression in adults. The interpretation of a second case of deltabeta-thalassaemia is complicated by the fact that the deletion removes the Agamma-gene in addition to the region near the 5'-end of the delta-globin gene.  相似文献   

20.
T-associated maternal effect (Tme) is the only known maternal-effect mutation in the mouse. The defect is nuclear-encoded and embryos that inherit a deletion of the Tme locus from their mother die at day 15 of gestation. There are many genomically imprinted regions known in the mouse genome but so far no imprinted genes have been cloned. The Tme locus is absent in two chromosome-17 deletion mutants, Thp and the tLub2, and its position has been localized using these deletions to a 1-cM region. We report here that the genes for insulin-like growth factor type-2 receptor (Igf2r) and mitochondrial superoxide dismutase-2 (Sod-2) are absent from both deletions. Probes for these genes and for plasminogen (Plg) and T-complex peptide 1 (Tcp-1) were used in pulsed-field gel mapping to show that Tme must lie within a region of 800-1,100 kb. We also demonstrate that embryos express Igf2r only from the maternal chromosome, and that Tcp-1, Plg and Sod-2 are expressed from both chromosomes. Therefore Igf2r is imprinted and closely linked or identical to Tme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号