首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
关于自然数组成的级数sum from k=1 to ∞ (k)和自然数平方组成的级数sum from k=1 to ∞ (k~2)的前n项求和公式: S_1(n)=sum from k=1 to n (k)=n(n+1)/2 S_2(n)=sum from k=1 to n (k~2)=1/6n(n+1)(2n+1) (2)我们大家非常熟悉,并且在一些文献中分别给出不同的证明。本文利用公式(1),(2)介绍几种自然数立方组成的级数sum from k=1 to ∞ (k~3)的前n项和公式:  相似文献   

2.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

3.
首先证明,L~2[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|~2)dx~(1/2),三角函数系F_1={1/2~(1/2),cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF_1为形如sum from k=0 to n(a_kcoskx+b_ksinkx)的三角多项式的全体。C_(2π)为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε>0,f∈2π,(?)T(x)=sum from k=0 to N(a_kcoskx+b_ksinkx)使(?)|f(x)-T(x)|<ε  相似文献   

4.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

5.
本文给出了计算正整数分拆数的一个递推公式: a_n~h=sum from i=h to [n/2] a_(mj)~i+1 (1≤h≤[n/2]) a_n~h=1 ([n/2]相似文献   

6.
定理1.设定义在[1,∞)上的正值函数μ(x)满足下面的条件:(ⅰ)存在N_0>0,使得当x≥N_0时,函数x~2μ(x)是增加的;(ⅱ)存在常数c>1,使得对于一切x,有Aμ(x)≤μ(cx)≤Bμ(x),A>0,B>0。设f(x)∈L~p(0,2π),1p,则当积分integral from n=0 to 1 1/t~2μ(1/t)[integral from n=0 to 2x|f(x t)-f(x-t)|pdx]~(β/p)dt (1) 收敛时,下面的级数收敛: sum from n=1 to ∞μ(n)[sum from k=n to ∞ρ_k~p k~(p-2)]~(β/p),(ρ_k~2=a_k~2 b_k~2) (2) 定理2.设μ(t)是正值函数, Σμ(n)/n~β<∞(β>0),并且存在常数c>0,使得μ(cx)~μ(x),x→∞。令An=sum from k=n to ∞ρ_k~p k~(p-2)。若存在正数α<1,使得An·n~(p-α)当n≥N_0时是增加的,则由(2)的收敛性可以得出(1)的收敛性。  相似文献   

7.
有关sum from i=1 to ∞(1/i~2)=π62的证明方法较多,文中利用二重积分并结合幂级数展开式给出了一种新证法。  相似文献   

8.
1.引言 設C[0,1]是區間[0,1]上一切連續函數的全體。若f(x)∈C[0,1],稱 B_n(x)=sum from k=0 to n f(k/n)C_n~kx~k(1-x)~(n-k)為f(x)的多項式。記C_(2π)是以2π為週期的週期連續函數全體。我們知道:當f(x)∈C_(2π)時,  相似文献   

9.
本文推广了φ(m)的和的估计式sum from m=1 to n φ(m)=(3/π~2)n~2 0(n~klogn),得到一般地k次方和的估计式:sum from m=1 to n φ~k(m)=(6/π~2)~k(n~k 1)/(k 1) 0(n~klogn)。设n为充分大的正整数,φ(m)为m的Euler函数。关于φ(m)的和,在[1]中有估计式:  相似文献   

10.
设f(x)是定义在[0,+∞)上的函数,吴华英引进了S. Bernstein多项式推广的另一种形式: B_n~*(f, x)=e~(-(nx)~2) sum from n=k=0 to ∞ f(k~(1/2)/n)(nx)~(2l)/k!它不同于O. Szasz提示的S. Bernstein多项式在无穷区间的推广形式 B_n(f, x)=e~(-nx) sum from n=k=0 to ∞ f(k/n)(nx)~k/k! 以上两种形式都是[0,+∞)上的推广。本文将函数f(x)定义在(-∞,+∞)上,并给出它的推广形式:  相似文献   

11.
本文通过对级数sum from n=1[1/(n+1)]=1无穷乘积multiqly from n=2 to ∞(1-1/n~2)=1/2和几何级数sum from n=0 to ∞q~n=1/1-q(|q|<1)的探讨,得到了七个定理和两个推论。  相似文献   

12.
设Ω是R~m(m≥2)中一个有界区域,考虑多调和算子组的特征值问题AΛ(△)u~T=λu~T,x∈Ωu~k=(?)u~k/(?)n=…=(?)~(k-1)u~k/(?)n~(k-1)=0,x∈(?)Ω,k=1,2,…,N其中,u=(u~1,u~2,…,u~N),n是(?)Ω的单位外法向量。将特征值按增加的顺序排列为0<λ_1≤λ_2≤…≤λ_n≤…则成立如下不等式λ_(n 1)≤λ_n 4/m~2n~2(sum from i=1 to n sum from h=1 to N λ_i~(1/k))(sum from i=1 to n sum from k=1 to N k(2k m-2)λ_i~(1-1/k)) sum from i=1 to n sum from k=1 to N λ_i~(1/k)/λ_(n 1)-λ_i≥m~2n~2/(sum from i=1 to n sum from k=1 to N 4k(2k m-2)λ_i~(1-1/k))  相似文献   

13.
判断一个级数收敛与发散的方法较多,但在知道一个级数收敛后,欲求其和,一般情况是比较困难的,而且通用的方法甚少。贝努里兄弟曾尽全力求级数sum from n=1 to ∞(1/n~2)之和,而未得结果。1736年,欧拉(Kuler)首先求得级数sum from n=1 to ∞(1/n~2)之和为π~2/6。以后又有了:  相似文献   

14.
由函数①C(x)=1+sum from n=1 to ∞(-1)~n(x~(2n))/((2n)!)(n∈N,x∈R), ②S(x)=sum from n=1 to ∞(-1)~(n-1)(x~(2n-1)/((2n-1)!)(n∈N,x∈R),的奇偶性,C(0)=1,S(O)=0,C~2(x)+S~2(x)=1,周期性,点[C(x),S(x)]与单位圆上点一一对应推出C(x)=cosx,S(x)=sinx,即  相似文献   

15.
利用致密性定理获得有界数列{y_n}收敛的一个充分条件:∨ε>0,■N∈Z+,使得当n>Z时,不等式yn-yn-1<ε恒成立。并发现任意项级数收敛的一个判定定理:如果级数sum from n=1 to ∞ a_n有界,且limn→∞a_n=0,则该级数收敛。由此获得:级数sum from n=1 to ∞ sin~(1+2s/t)=n/n~α收敛,其中s∈Z,t∈Z+,0<α≤1。并进行推广:如果s∈Z,t∈Z~+,0<α≤1,则级数sum from n=1 to ∞sin~1+2s/t)(an)/n~α收敛。再获得一个一般性结论:设有界函数f(n)满足0≤f(n)0,k,l∈Z。  相似文献   

16.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

17.
设Ω={f(z):f(z)在|z|<1内解析,f(z)=z sum from n=2 to ∞(an ibn)zn,an,bn为实数,sum from n=2 to ∞n (a2n bn2)~(1/2)≤1},找出了函数族Ω的极值点与支撑点.  相似文献   

18.
§1.设k次对称函数fk(x)=z sum from v=1 to ∝(a_(vk)_1)~(z~(vk_1))=z sum from v=z to ∝ (a_n~(k)z~(vk 1)在单位圆|z|<1中正则单叶,这类函数的全体称为S_k,设σ_n~(k)=z sum from v=1 to ∝n (a_(vk)_1~(z~(vk 1))。 舍苟证明一切σ_n~(1)(z)在圆|z|<1/4中单叶,且不能易以更大的数,伊列夫证明当  相似文献   

19.
对于sum from n=1 to ∞ 1/n~(2m)(m∈Z~+),当n-1时,有sum from n=1 to ∞ 1/n~2=π~2/6,并且对它有着许多种不同的证法.通过博里叶(Fourier)级数以及逐项积分,得到关于sum from n=1 to ∞ 1/n~(2m)(m∈Z~+)的和的系数的一个递推关系式,并给出当m=1,2,3,4,5时的结果。  相似文献   

20.
本文采用一种间接的方法,"意外"获得了数项级数(sum (1/((2n+1)~2)) from n=0 to ∞)的和,并由此附带得到了级数(sum (1/(n~2)) from n=1 to ∞)1/2的和π~2/6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号