首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
介绍数据挖掘中关联规则的情况.在分析关联规则挖掘算法的基础上,对经典Apriori算法进行改进,改进算法意在通过减少生成候选频繁项集的数量和扫描数据库次数.从而,加快算法的执行效率和节省空间.  相似文献   

2.
在分析当前Apriori算法及其改进算法的基础上,提出了一种将Apriori算法与物流信息挖掘相结合的Apriori改进算法.通过Apriori改进算法与原Apriori算法挖掘结果的比较,说明了Apriori改进算法不仅缩小了剪枝扫描数据库的规模而且减少了生成频繁项目集的候选项目集.  相似文献   

3.
采取二维数组方法一次性将数据全部读进内存的方法改进Apriori算法,并用改进的Apriori算法对一种单病种信息进行挖掘,得出和管理指标相关的信息,这些信息对今后预防和控制疾病有帮助。  相似文献   

4.
挖掘关联规则Apriori算法的一种改进   总被引:1,自引:0,他引:1  
本研究在对Apriori算法分析的基础上,提出了改进的Apriori算法。改进后的算法采用矩阵表示数据库,减少了扫描事物数据库的次数;利用向量运算来实现频繁项集的计数,同时及时地去掉不必要的数据,减少了数据运算,从而提高了算法的运行效率。  相似文献   

5.
一种改进的Apriori算法   总被引:1,自引:0,他引:1  
Apriori算法存在许多可以改进的地方.例如它需要反复读取数据库,并且读取的次数由项目集中的项目个数来确定,I/O负载与最大项目集的项数成正比.本文提出一种只读一次数据库的的改进算法.  相似文献   

6.
一种改进的Apriori算法   总被引:3,自引:0,他引:3       下载免费PDF全文
介绍了关联规则挖掘的情况,并在分析关联规则的数据挖掘算法的基础上,提出一个改进的Apriori算法.新算法仅对数据库扫描一次,就能找出所有的频繁项集,从而提高了挖掘的效率,具有一定的实用性  相似文献   

7.
挖掘大型数据库中的Apriori算法及其改进   总被引:11,自引:2,他引:11  
指出了Apriori算法是一种有效的关联规则挖掘算法,分析和探讨了Apriori算法,并给出了该算法的实现思想,通过实例说明了算法的执行过程,提出了对Apriori算法进行改进的一些方法:散列、事务压缩、划分、选样及动态项集计数。使用这些技术提高了算法的效率。  相似文献   

8.
关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有意义的关联。随着大量数据不停的收集和存储,从数据库中挖掘关联规则显得越来越有必要性,关联规则挖掘的Apriori算法是数据库挖掘的最经典算法并得到广泛应用,在介绍关联规则挖掘和Apriori算法的基础上,发现Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点。综述了Apriori算法的主要优化方法,并指出了Apriori算法在实际中的应用领域,提出了未来Apriori算法的研究方向和应用发展趋势。  相似文献   

9.
关联规则挖掘Apriori算法的改进及其应用研究   总被引:1,自引:0,他引:1  
在分析经典关联规则挖掘算法的基础上.提出了一种改进的Aprioff关联规则算法.并进行该算法的UCI机嚣学习数据库性能分析和设计电子病历关联规则挖掘应用系统.结果表明该算法在运行速度和挖掘性能上都是高效的.  相似文献   

10.
对Apriori算法的一种改进   总被引:2,自引:0,他引:2  
给出了一种对Apriori算法改进的算法。改进的算法只需扫描一次数据库D,同时简化了Apriori算法,减少了存储设备I/O时间,提高了算法的效率。  相似文献   

11.
概念格通过概念的内涵和外延及泛化和例化之间的关系来表示知识,因而适用于从数据库中挖掘规则的问题描述;在概念格的内涵中引入等价关系并将其外延量化,得到量化概念格;利用量化概念格挖掘关联规则,与采用Apriori算法计算频繁项目集获取关联规则相比较,不需要计算频繁项目集,容易获得用户感兴趣的关联规则,同时减少了大量冗余的规则,提高了挖掘效率。  相似文献   

12.
针对Apriori算法在面对大规模数据时效率较低的问题,提出了一种基于划分和压缩数据库的改进方法。该方法首先依据特征数据出现的频率将数据按照升序存储在临时数组中;然后将原始事务数据库分为几个互不相交的事务数据库,使得子数据库能够容纳在内存中;最后根据每个子数据库计算出的频繁项集计算整个数据库的频繁项集,从而消除了不必要的冗余数据。通过改进可以将大规模数据集进行有效的划分和压缩,对子数据库进行关联规则挖掘。实验结果表明,改进的Apriori算法在针对海量数据挖掘的执行速度和效率都有很大提高。  相似文献   

13.
关联规则挖掘主要用来发现数据库中存在的频繁项集.利用权值标识项目的重要程度,提出一种新的关联规则——加权关联规则的挖掘.由于项目权值的引入,Apriori性质不再成立,频繁项集的子集不再一定是频繁的.为此,提出k-最小支持数的概念,对原有Apriori算法进行改进.该算法能够挖掘出现频率小但是带来更大利润的项目,使得挖掘出的关联规则更加满足决策者的需求,也更加符合实际需要.  相似文献   

14.
频繁项目集发现算法Apriori的研究   总被引:3,自引:0,他引:3  
为了提高Apriori算法的效率,从减少数据库扫描次数的角度出发,提出了一种动态自适应的改进算法.通过比较,该改进算法有效地减少了数据库的扫描次数,明显地提高了Apriori算法的效率,当数据库中总项目数目较大时,该算法更为有效.  相似文献   

15.
Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.  相似文献   

16.
hldirect association is a high level relationship between items and frequent itemsets in data. Current research approaches on indirect association mining are limited to indirect association between itempairs,which will discover too many rules from dataset. A formal definition of indirect association between multiple items is presented, along with an algorithm, SET NIA, for mining this kind of indirect associations based on anti-monotonicity of indirect associations and frequent itempair support matrix. While the found rules contain same information as compared to the rules found by indirect association between itempairs algorithms, this notion brings space-saving in storage of the rules as well as superiority for human to understand and apply the ndes. Experiments conducted on two real-word datasets show that SET _ NIA can effectively find fewer rules than existing algorithms which mine indirect association between itempairs,the experimental results also prove that SET_NIA has better performance than existing algorithms.  相似文献   

17.
给出三类约束,并讨论了约束的反单调性,实现了一种交互式的可约束的最小关联规则集挖掘算法,并分析了算法的优越性。  相似文献   

18.
一种高效关联规则挖掘算法   总被引:1,自引:0,他引:1  
为了提高关联规则挖掘算法处理数据库的效率,在研究AprioriTid算法的基础上提出一种高效的关联规则挖掘算法AprioriTidD,在计算数据库中的频繁项集时依靠有效的裁剪减少无效项集的产生,并且可减少产生候选项集,从而有效地提高算法的效率.选取程序模拟超市购物产生的3个试验数据集,应用AprioriTidD算法对该...  相似文献   

19.
关联规则挖掘是数据挖掘的主要技术之一,现有的关联规则挖掘算法均基于支持度-置信度框架,当用户调整阈值时存在多次遍历数据库和重复计算问题。该文针对支持度阈值变化时的关联规则维护问题,提出了关联规则交互挖掘算法HIUA,该算法改进了原始IUA算法的剪枝过程,并通过Hash结构提高算法运行效率。在UCI数据集及企业实际财务数据集中的实验结果表明:在支持度阈值发生变化的过程中HIUA算法进一步利用已有挖掘结果,有效提高了关联规则挖掘的效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号